These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 36160975)
1. Effect of aerial application of adjuvants on pepper defoliant droplet deposition and efficacy of defoliation sprayed by unmanned aerial vehicles. Liu Y; Xiao Q; Han X; Zeeshan M; Fang Z; Dou Z Front Plant Sci; 2022; 13():917462. PubMed ID: 36160975 [TBL] [Abstract][Full Text] [Related]
2. Droplet distribution in cotton canopy using single-rotor and four-rotor unmanned aerial vehicles. Meng Y; Ma Y; Wang Z; Hu H PeerJ; 2022; 10():e13572. PubMed ID: 35722263 [TBL] [Abstract][Full Text] [Related]
3. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Li L; Hu Z; Liu Q; Yi T; Han P; Zhang R; Pan L Front Plant Sci; 2022; 13():981494. PubMed ID: 36247584 [TBL] [Abstract][Full Text] [Related]
4. Preparation and application of a thidiazuron·diuron ultra-low-volume spray suitable for plant protection unmanned aerial vehicles. Liu Q; Wei K; Yang L; Xu W; Xue W Sci Rep; 2021 Mar; 11(1):4998. PubMed ID: 33654144 [TBL] [Abstract][Full Text] [Related]
5. UAV spraying on citrus crop: impact of tank-mix adjuvant on the contact angle and droplet distribution. Meng Y; Zhong W; Liu C; Su J; Su J; Lan Y; Wang Z; Wang M PeerJ; 2022; 10():e13064. PubMed ID: 35295557 [TBL] [Abstract][Full Text] [Related]
6. Effect of formulations and adjuvants on the properties of acetamiprid solution and droplet deposition characteristics sprayed by UAV. Zeeshan M; Li H; Yousaf G; Ren H; Liu Y; Arshad M; Dou Z; Han X Front Plant Sci; 2024; 15():1441193. PubMed ID: 39157513 [TBL] [Abstract][Full Text] [Related]
7. Tank-mix adjuvants improved spray performance and biological efficacy in rice insecticide application with unmanned aerial vehicle sprayer. Wang L; Xia S; Zhang H; Li Y; Huang Z; Qiao B; Zhong L; Cao M; He X; Wang C; Liu Y Pest Manag Sci; 2024 Sep; 80(9):4371-4385. PubMed ID: 38662472 [TBL] [Abstract][Full Text] [Related]
8. Estimation of cotton canopy parameters based on unmanned aerial vehicle (UAV) oblique photography. Wu J; Wen S; Lan Y; Yin X; Zhang J; Ge Y Plant Methods; 2022 Dec; 18(1):129. PubMed ID: 36482426 [TBL] [Abstract][Full Text] [Related]
9. Research on a UAV spray system combined with grid atomized droplets. Xue X; Tian Y; Yang Z; Li Z; Lyu S; Song S; Sun D Front Plant Sci; 2023; 14():1286332. PubMed ID: 38235193 [TBL] [Abstract][Full Text] [Related]
10. The Relationship between Droplet Density and the Defoliation Effect of Cotton Harvest Aids. Duan L; Fang Z; Dou Z; Liu Y; Wen M; Hou T; Han X ACS Omega; 2024 Apr; 9(14):16486-16495. PubMed ID: 38617698 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of unmanned aerial vehicle for effective spraying application in coconut plantations. Pandiselvam R; Daliyamol ; Imran S S; Hegde V; Sujithra M; Prathibha PS; Prathibha VH; Hebbar KB Heliyon; 2024 Oct; 10(19):e38569. PubMed ID: 39397987 [TBL] [Abstract][Full Text] [Related]
12. Spray performance and control efficacy against pests in paddy rice by UAV-based pesticide application: effects of atomization, UAV configuration and flight velocity. Wongsuk S; Qi P; Wang C; Zeng A; Sun F; Yu F; Zhao X; Xiongkui H Pest Manag Sci; 2024 Apr; 80(4):2072-2084. PubMed ID: 38129096 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of aerial spraying application of multi-rotor unmanned aerial vehicle for Wang J; Ma C; Chen P; Yao W; Yan Y; Zeng T; Chen S; Lan Y Front Plant Sci; 2023; 14():1093912. PubMed ID: 36925752 [TBL] [Abstract][Full Text] [Related]
14. Distribution characteristics on droplet deposition of wind field vortex formed by multi-rotor UAV. Guo S; Li J; Yao W; Zhan Y; Li Y; Shi Y PLoS One; 2019; 14(7):e0220024. PubMed ID: 31329644 [TBL] [Abstract][Full Text] [Related]
15. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Wang C; Herbst A; Zeng A; Wongsuk S; Qiao B; Qi P; Bonds J; Overbeck V; Yang Y; Gao W; He X Sci Total Environ; 2021 Jul; 777():146181. PubMed ID: 33689892 [TBL] [Abstract][Full Text] [Related]
16. Evaluating the use of unmanned aerial vehicles for spray applications in mountain Nanguo pear orchards. Guo S; Chen C; Du G; Yu F; Yao W; Lan Y Pest Manag Sci; 2024 Jul; 80(7):3590-3602. PubMed ID: 38451056 [TBL] [Abstract][Full Text] [Related]
17. Tank-Mix Adjuvants Enhance Pesticide Efficacy by Improving Physicochemical Properties and Spraying Characteristics for Application to Cotton with Unmanned Aerial Vehicles. Hu H; Ma Y; Song X; Wang D; Ren X; Wu C; Liu C; Ma X; Shan Y; Meng Y; Ma Y ACS Omega; 2024 Jul; 9(28):31011-31025. PubMed ID: 39035928 [TBL] [Abstract][Full Text] [Related]
18. Using tank-mix adjuvant improves the physicochemical properties and dosage delivery to reduce the use of pesticides in unmanned aerial vehicles for plant protection in wheat. Zhao R; Yu M; Sun Z; Li LJ; Shang HY; Xi WJ; Li B; Li YY; Xu Y; Wu XM Pest Manag Sci; 2022 Jun; 78(6):2512-2522. PubMed ID: 35318795 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Droplet Size, Coverage, and Drift Potential from UAV Application Methods and Ground Application Methods on Row Crops. Gibbs J; Peters TM; Heck LP Trans ASABE; 2021; 64(3):819-828. PubMed ID: 37667776 [TBL] [Abstract][Full Text] [Related]
20. Effects of tank-mix adjuvants on physicochemical properties and dosage delivery at low dilution ratios for unmanned aerial vehicle application in paddy fields. Zhao R; Sun Z; Bird N; Gu YC; Xu Y; Zhang ZH; Wu XM Pest Manag Sci; 2022 Apr; 78(4):1582-1593. PubMed ID: 34984795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]