These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36160975)

  • 21. Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection.
    Li X; Giles DK; Niederholzer FJ; Andaloro JT; Lang EB; Watson LJ
    Pest Manag Sci; 2021 Jan; 77(1):527-537. PubMed ID: 32816397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environmental, bystander and resident exposure from orchard applications using an agricultural unmanned aerial spraying system.
    Dubuis PH; Droz M; Melgar A; Zürcher UA; Zarn JA; Gindro K; König SLB
    Sci Total Environ; 2023 Jul; 881():163371. PubMed ID: 37044339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. WSN-Assisted UAV Trajectory Adjustment for Pesticide Drift Control.
    Hu J; Wang T; Yang J; Lan Y; Lv S; Zhang Y
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987849
    [TBL] [Abstract][Full Text] [Related]  

  • 24. UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses.
    Biglia A; Grella M; Bloise N; Comba L; Mozzanini E; Sopegno A; Pittarello M; Dicembrini E; Alcatrão LE; Guglieri G; Balsari P; Aimonino DR; Gay P
    Sci Total Environ; 2022 Nov; 845():157292. PubMed ID: 35820523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spray performance evaluation of a six-rotor unmanned aerial vehicle sprayer for pesticide application using an orchard operation mode in apple orchards.
    Wang C; Liu Y; Zhang Z; Han L; Li Y; Zhang H; Wongsuk S; Li Y; Wu X; He X
    Pest Manag Sci; 2022 Jun; 78(6):2449-2466. PubMed ID: 35306733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of Plant Protection UAV Variable Spray System Based on Neural Networks.
    Wen S; Zhang Q; Yin X; Lan Y; Zhang J; Ge Y
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30841563
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Downwash characteristics and analysis from a six-rotor unmanned aerial vehicle configured for plant protection.
    Yang S; Xu P; Jiang S; Zheng Y
    Pest Manag Sci; 2022 Apr; 78(4):1707-1720. PubMed ID: 34994501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Droplet Deposition Distribution Prediction Method for a Six-Rotor Plant Protection UAV Based on Inverse Distance Weighting.
    Wang B; Zhang Y; Wang C; Teng G
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236524
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stereoscopic plant-protection system integrating UAVs and autonomous ground sprayers for orchards.
    Jiang S; Chen B; Li W; Yang S; Zheng Y; Liu X
    Front Plant Sci; 2022; 13():1040808. PubMed ID: 36388533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations.
    Siddiqi MA; Iwendi C; Jaroslava K; Anumbe N
    Math Biosci Eng; 2022 Jan; 19(3):2641-2670. PubMed ID: 35240800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management.
    Hunter JE; Gannon TW; Richardson RJ; Yelverton FH; Leon RG
    Pest Manag Sci; 2020 Apr; 76(4):1386-1392. PubMed ID: 31622004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Intelligent Vision Based Sensing Approach for Spraying Droplets Deposition Detection.
    Wang L; Yue X; Liu Y; Wang J; Wang H
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Control Efficacy and Deposition Characteristics of an Unmanned Aerial Spray System Low-Volume Application on Corn Fall Armyworm
    Shan C; Wu J; Song C; Chen S; Wang J; Wang H; Wang G; Lan Y
    Front Plant Sci; 2022; 13():900939. PubMed ID: 36176691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution.
    Park S; Lee H; Chon J
    Environ Pollut; 2019 Apr; 247():340-348. PubMed ID: 30690230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of Variable Spray System for Plant Protection UAV Based on CFD Simulation and Regression Analysis.
    Ni M; Wang H; Liu X; Liao Y; Fu L; Wu Q; Mu J; Chen X; Li J
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques.
    Chamola V; Kotesh P; Agarwal A; Naren ; Gupta N; Guizani M
    Ad Hoc Netw; 2021 Feb; 111():102324. PubMed ID: 33071687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Productivity model and experiment of field crop spraying by plant protection unmanned aircraft.
    Qin W; Chen P; Wang B
    Front Plant Sci; 2023; 14():1168228. PubMed ID: 37152163
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of dump and landfill waste volumes using unmanned aerial systems.
    Filkin T; Sliusar N; Huber-Humer M; Ritzkowski M; Korotaev V
    Waste Manag; 2022 Feb; 139():301-308. PubMed ID: 34998186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Droplet deposition and pest control efficacy on pine trees from aerial application.
    Yao W; Guo S; Wang J; Chen C; Yu F; Li X; Xu T; Lan Y
    Pest Manag Sci; 2022 Aug; 78(8):3324-3336. PubMed ID: 35491531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests.
    Roşca S; Suomalainen J; Bartholomeus H; Herold M
    Interface Focus; 2018 Apr; 8(2):20170038. PubMed ID: 29503719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.