These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 36161440)
1. A Highly Dynamic Covalent Polymer Network without Creep: Mission Impossible? Van Lijsebetten F; Debsharma T; Winne JM; Du Prez FE Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202210405. PubMed ID: 36161440 [TBL] [Abstract][Full Text] [Related]
2. Catalyst-Free α-Acetyl Cinnamate/Acetoacetate Exchange to Enable High Creep-Resistant Vitrimers. Feng H; Wang S; Lim JYC; Li B; Rusli W; Liu F; Hadjichristidis N; Li Z; Zhu J Angew Chem Int Ed Engl; 2024 May; 63(20):e202400955. PubMed ID: 38489506 [TBL] [Abstract][Full Text] [Related]
3. Direct Silyl Ether Metathesis for Vitrimers with Exceptional Thermal Stability. Tretbar CA; Neal JA; Guan Z J Am Chem Soc; 2019 Oct; 141(42):16595-16599. PubMed ID: 31603321 [TBL] [Abstract][Full Text] [Related]
4. Creep and Recovery Behavior of Vitrimers with Fast Bond Exchange Rate. Perego A; Khabaz F Macromol Rapid Commun; 2023 Jan; 44(1):e2200313. PubMed ID: 35856395 [TBL] [Abstract][Full Text] [Related]
6. Enabling Applications of Covalent Adaptable Networks. McBride MK; Worrell BT; Brown T; Cox LM; Sowan N; Wang C; Podgorski M; Martinez AM; Bowman CN Annu Rev Chem Biomol Eng; 2019 Jun; 10():175-198. PubMed ID: 30883213 [TBL] [Abstract][Full Text] [Related]
7. Suppressing Creep and Promoting Fast Reprocessing of Vitrimers with Reversibly Trapped Amines. Van Lijsebetten F; De Bruycker K; Spiesschaert Y; Winne JM; Du Prez FE Angew Chem Int Ed Engl; 2022 Feb; 61(9):e202113872. PubMed ID: 34981887 [TBL] [Abstract][Full Text] [Related]
8. Designed from Biobased Materials for Recycling: Imine-Based Covalent Adaptable Networks. Liguori A; Hakkarainen M Macromol Rapid Commun; 2022 Jul; 43(13):e2100816. PubMed ID: 35080074 [TBL] [Abstract][Full Text] [Related]
10. The Impact of Vitrimers on the Industry of the Future: Chemistry, Properties and Sustainable Forward-Looking Applications. Alabiso W; Schlögl S Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32722554 [TBL] [Abstract][Full Text] [Related]
11. Exploiting Lignin Structure and Reactivity to Design Vitrimers with Controlled Ratio of Dynamic to Non-Dynamic Bonds. Duval A; Benali W; Avérous L ChemSusChem; 2024 Sep; ():e202401480. PubMed ID: 39258939 [TBL] [Abstract][Full Text] [Related]
12. Vitrimers: directing chemical reactivity to control material properties. Guerre M; Taplan C; Winne JM; Du Prez FE Chem Sci; 2020 Apr; 11(19):4855-4870. PubMed ID: 34122941 [TBL] [Abstract][Full Text] [Related]
13. Endowing Polythioester Vitrimer with Intrinsic Crystallinity and Chemical Recyclability. Shi C; Zhang Z; Scoti M; Yan XY; Chen EY ChemSusChem; 2023 Apr; 16(8):e202300008. PubMed ID: 36638158 [TBL] [Abstract][Full Text] [Related]
14. Elastomeric vitrimers from designer polyhydroxyalkanoates with recyclability and biodegradability. Cywar RM; Ling C; Clarke RW; Kim DH; Kneucker CM; Salvachúa D; Addison B; Hesse SA; Takacs CJ; Xu S; Demirtas MU; Woodworth SP; Rorrer NA; Johnson CW; Tassone CJ; Allen RD; Chen EY; Beckham GT Sci Adv; 2023 Nov; 9(47):eadi1735. PubMed ID: 37992173 [TBL] [Abstract][Full Text] [Related]
15. Advancing Recyclable Thermosets through C═C/C═N Dynamic Covalent Metathesis Chemistry. Zheng J; Feng H; Zhang X; Zheng J; Ng JKW; Wang S; Hadjichristidis N; Li Z J Am Chem Soc; 2024 Aug; 146(31):21612-21622. PubMed ID: 39046371 [TBL] [Abstract][Full Text] [Related]
20. Reprocessible Triketoenamine-Based Vitrimers with Closed-Loop Recyclability. Hu Z; Hu F; Deng L; Yang Y; Xie Q; Gao Z; Pan C; Jin Y; Tang J; Yu G; Zhang W Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202306039. PubMed ID: 37314932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]