These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 36161543)
1. Validation of the flow index to detect low inspiratory effort during pressure support ventilation. Miao MY; Chen W; Zhou YM; Gao R; Song DJ; Wang SP; Yang YL; Zhang L; Zhou JX Ann Intensive Care; 2022 Sep; 12(1):89. PubMed ID: 36161543 [TBL] [Abstract][Full Text] [Related]
2. Use of airway pressure-based indices to detect high and low inspiratory effort during pressure support ventilation: a diagnostic accuracy study. Yang YL; Liu Y; Gao R; Song DJ; Zhou YM; Miao MY; Chen W; Wang SP; Wang YF; Zhang L; Zhou JX Ann Intensive Care; 2023 Nov; 13(1):111. PubMed ID: 37955842 [TBL] [Abstract][Full Text] [Related]
3. Non-invasive method to detect high respiratory effort and transpulmonary driving pressures in COVID-19 patients during mechanical ventilation. Roesthuis L; van den Berg M; van der Hoeven H Ann Intensive Care; 2021 Feb; 11(1):26. PubMed ID: 33555520 [TBL] [Abstract][Full Text] [Related]
4. Spontaneous breathing trial and post-extubation work of breathing in morbidly obese critically ill patients. Mahul M; Jung B; Galia F; Molinari N; de Jong A; Coisel Y; Vaschetto R; Matecki S; Chanques G; Brochard L; Jaber S Crit Care; 2016 Oct; 20(1):346. PubMed ID: 27784322 [TBL] [Abstract][Full Text] [Related]
5. Flow Index accurately identifies breaths with low or high inspiratory effort during pressure support ventilation. Albani F; Fusina F; Ciabatti G; Pisani L; Lippolis V; Franceschetti ME; Giovannini A; di Mussi R; Murgolo F; Rosano A; Grasso S; Natalini G Crit Care; 2021 Dec; 25(1):427. PubMed ID: 34911541 [TBL] [Abstract][Full Text] [Related]
6. Limited predictability of maximal muscular pressure using the difference between peak airway pressure and positive end-expiratory pressure during proportional assist ventilation (PAV). Su PL; Kao PS; Lin WC; Su PF; Chen CW Crit Care; 2016 Nov; 20(1):382. PubMed ID: 27888836 [TBL] [Abstract][Full Text] [Related]
7. Non-invasive assessment of respiratory muscle activity during pressure support ventilation: accuracy of end-inspiration occlusion and least square fitting methods. Natalini G; Buizza B; Granato A; Aniballi E; Pisani L; Ciabatti G; Lippolis V; Rosano A; Latronico N; Grasso S; Antonelli M; Bernardini A J Clin Monit Comput; 2021 Aug; 35(4):913-921. PubMed ID: 32617847 [TBL] [Abstract][Full Text] [Related]
8. Accuracy of Invasive and Noninvasive Parameters for Diagnosing Ventilatory Overassistance During Pressure Support Ventilation. Pletsch-Assuncao R; Caleffi Pereira M; Ferreira JG; Cardenas LZ; de Albuquerque ALP; de Carvalho CRR; Caruso P Crit Care Med; 2018 Mar; 46(3):411-417. PubMed ID: 29189344 [TBL] [Abstract][Full Text] [Related]
9. Use of pressure muscle index to predict the contribution of patient's inspiratory effort during pressure support ventilation: a prospective physiological study. Gao R; Zhou JX; Yang YL; Xu SS; Zhou YM; Zhang L; Miao MY Front Med (Lausanne); 2024; 11():1390878. PubMed ID: 38737762 [TBL] [Abstract][Full Text] [Related]
10. Conventional monitoring is not sufficient to assess respiratory effort during assisted ventilation. Ruiz Ferrón F; Serrano Simón JM Med Intensiva (Engl Ed); 2019 May; 43(4):197-206. PubMed ID: 29615274 [TBL] [Abstract][Full Text] [Related]
12. Flow Index: a novel, non-invasive, continuous, quantitative method to evaluate patient inspiratory effort during pressure support ventilation. Albani F; Pisani L; Ciabatti G; Fusina F; Buizza B; Granato A; Lippolis V; Aniballi E; Murgolo F; Rosano A; Latronico N; Antonelli M; Grasso S; Natalini G Crit Care; 2021 Jun; 25(1):196. PubMed ID: 34099028 [TBL] [Abstract][Full Text] [Related]
13. [Comparison of the effects between low-level assisted ventilation and T-piece method on respiratory mechanics during weaning of mechanically ventilated patients]. Wang S; Jiang Z; Zhang B; Lu G; Wang Z; Lin Z; Chen Q; Yang C; Sun Q; Ruan H; Xu Y Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2021 Jun; 33(6):697-701. PubMed ID: 34296689 [TBL] [Abstract][Full Text] [Related]
14. P0.1 is a useful parameter in setting the level of pressure support ventilation. Alberti A; Gallo F; Fongaro A; Valenti S; Rossi A Intensive Care Med; 1995 Jul; 21(7):547-53. PubMed ID: 7593895 [TBL] [Abstract][Full Text] [Related]
15. Work of breathing in adaptive pressure control continuous mandatory ventilation. Mireles-Cabodevila E; Chatburn RL Respir Care; 2009 Nov; 54(11):1467-72. PubMed ID: 19863830 [TBL] [Abstract][Full Text] [Related]
16. A brief airway occlusion is sufficient to measure the patient's inspiratory effort/electrical activity of the diaphragm index (PEI). Coppadoro A; Rona R; Bellani G; Foti G J Clin Monit Comput; 2021 Feb; 35(1):183-188. PubMed ID: 31919632 [TBL] [Abstract][Full Text] [Related]
17. Effect of inspiratory synchronization during pressure-controlled ventilation on lung distension and inspiratory effort. Rittayamai N; Beloncle F; Goligher EC; Chen L; Mancebo J; Richard JM; Brochard L Ann Intensive Care; 2017 Oct; 7(1):100. PubMed ID: 28986852 [TBL] [Abstract][Full Text] [Related]
18. [Variation in inspiratory gas flow in pressure support ventilation. The effect on respiratory mechanics and respiratory work]. Sydow M; Thies K; Engel J; Golisch W; Buscher H; Zinserling J; Burchardi H Anaesthesist; 1996 Nov; 45(11):1051-8. PubMed ID: 9012300 [TBL] [Abstract][Full Text] [Related]
19. Neural Network-Enabled Identification of Weak Inspiratory Efforts during Pressure Support Ventilation Using Ventilator Waveforms. Soundoulounaki S; Sylligardos E; Akoumianaki E; Sigalas M; Kondili E; Georgopoulos D; Trahanias P; Vaporidi K J Pers Med; 2023 Feb; 13(2):. PubMed ID: 36836581 [TBL] [Abstract][Full Text] [Related]
20. Predictors of extubation success and failure in mechanically ventilated infants and children. Khan N; Brown A; Venkataraman ST Crit Care Med; 1996 Sep; 24(9):1568-79. PubMed ID: 8797633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]