These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 36161545)
1. Hitchhiking into a cell: flavonoids may produce complexes with transition metals for transmembrane translocation. Tarahovsky YS Biometals; 2022 Dec; 35(6):1299-1306. PubMed ID: 36161545 [TBL] [Abstract][Full Text] [Related]
2. Transition Metal Coordination Complexes of Flavonoids: A Class of Better Pharmacological Active Molecules to Develop New Drugs. Jayaprakash S; Ramesh S; Karthikeyan A; Murugappan S; Sidharthan P; Selvaraj S Anticancer Agents Med Chem; 2023; 23(4):417-431. PubMed ID: 35619308 [TBL] [Abstract][Full Text] [Related]
3. Flavonoid-metal ion Complexes as Potent Anticancer Metallodrugs: A Comprehensive Review. Zangade SB; Dhulshette BS; Patil PB Mini Rev Med Chem; 2024; 24(10):1046-1060. PubMed ID: 37867263 [TBL] [Abstract][Full Text] [Related]
4. Studies on transition metal-quercetin complexes using electrospray ionization tandem mass spectrometry. Liu Y; Guo M Molecules; 2015 May; 20(5):8583-94. PubMed ID: 25985359 [TBL] [Abstract][Full Text] [Related]
5. Plant-derived chelators and ionophores as potential therapeutics for metabolic diseases. Lee VJ; Janisse SE; Heffern MC Chem Soc Rev; 2023 Jun; 52(11):3927-3945. PubMed ID: 37203389 [TBL] [Abstract][Full Text] [Related]
6. Iron Complexes of Flavonoids-Antioxidant Capacity and Beyond. Kejík Z; Kaplánek R; Masařík M; Babula P; Matkowski A; Filipenský P; Veselá K; Gburek J; Sýkora D; Martásek P; Jakubek M Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33440733 [TBL] [Abstract][Full Text] [Related]
7. The Stoichiometry of Isoquercitrin Complex with Iron or Copper Is Highly Dependent on Experimental Conditions. Catapano MC; Tvrdý V; Karlíčková J; Migkos T; Valentová K; Křen V; Mladěnka P Nutrients; 2017 Oct; 9(11):. PubMed ID: 29084179 [TBL] [Abstract][Full Text] [Related]
8. Interaction between transition metals and phenylalanine: a combined experimental and computational study. Elius Hossain M; Mahmudul Hasan M; Halim ME; Ehsan MQ; Halim MA Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():499-508. PubMed ID: 25528509 [TBL] [Abstract][Full Text] [Related]
9. Prooxidant Activity of Polyphenols, Flavonoids, Anthocyanins and Carotenoids: Updated Review of Mechanisms and Catalyzing Metals. Eghbaliferiz S; Iranshahi M Phytother Res; 2016 Sep; 30(9):1379-91. PubMed ID: 27241122 [TBL] [Abstract][Full Text] [Related]
10. Metal chelating ability and antioxidant properties of Curcumin-metal complexes - A DFT approach. Mary CPV; Vijayakumar S; Shankar R J Mol Graph Model; 2018 Jan; 79():1-14. PubMed ID: 29127853 [TBL] [Abstract][Full Text] [Related]
11. In Vitro Antioxidant versus Metal Ion Chelating Properties of Flavonoids: A Structure-Activity Investigation. Cherrak SA; Mokhtari-Soulimane N; Berroukeche F; Bensenane B; Cherbonnel A; Merzouk H; Elhabiri M PLoS One; 2016; 11(10):e0165575. PubMed ID: 27788249 [TBL] [Abstract][Full Text] [Related]
12. Bivalent transition metal complexes of ONO donor hydrazone ligand: Synthesis, structural characterization and antimicrobial activity. Bhaskar R; Salunkhe N; Yaul A; Aswar A Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():621-7. PubMed ID: 26163785 [TBL] [Abstract][Full Text] [Related]
13. Flavonoid-membrane interactions: involvement of flavonoid-metal complexes in raft signaling. Tarahovsky YS; Kim YA; Yagolnik EA; Muzafarov EN Biochim Biophys Acta; 2014 May; 1838(5):1235-46. PubMed ID: 24472512 [TBL] [Abstract][Full Text] [Related]
14. Threshold dissociation and molecular modeling of transition metal complexes of flavonoids. Zhang J; Brodbelt JS; Wang J J Am Soc Mass Spectrom; 2005 Feb; 16(2):139-51. PubMed ID: 15694764 [TBL] [Abstract][Full Text] [Related]
15. First Steps to Rationalize Host-Guest Interaction between α-, β-, and γ-Cyclodextrin and Divalent First-Row Transition and Post-transition Metals (Subgroups VIIB, VIIIB, and IIB). Dossmann H; Fontaine L; Weisgerber T; Bonnet V; Monflier E; Ponchel A; Przybylski C Inorg Chem; 2021 Jan; 60(2):930-943. PubMed ID: 33375780 [TBL] [Abstract][Full Text] [Related]
16. Flavonoid-metal ion complexes: a novel class of therapeutic agents. Selvaraj S; Krishnaswamy S; Devashya V; Sethuraman S; Krishnan UM Med Res Rev; 2014 Jul; 34(4):677-702. PubMed ID: 24037904 [TBL] [Abstract][Full Text] [Related]
17. Interaction studies of human prion protein (HuPrP109-111: methionine-lysine-histidine) tripeptide model with transition metal cations. Pitchumani Violet Mary C; Shankar R; Vijayakumar S; Kolandaivel P J Mol Graph Model; 2016 Sep; 69():111-26. PubMed ID: 27611644 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes. Grubel K; Rudzka K; Arif AM; Klotz KL; Halfen JA; Berreau LM Inorg Chem; 2010 Jan; 49(1):82-96. PubMed ID: 19954165 [TBL] [Abstract][Full Text] [Related]
19. Metal complexes of flavonoids: their synthesis, characterization and enhanced antioxidant and anticancer activities. Khater M; Ravishankar D; Greco F; Osborn HM Future Med Chem; 2019 Nov; 11(21):2845-2867. PubMed ID: 31722558 [TBL] [Abstract][Full Text] [Related]
20. Antioxidant properties of flavonoid metal complexes and their potential inclusion in the development of novel strategies for the treatment against neurodegenerative diseases. Rodríguez-Arce E; Saldías M Biomed Pharmacother; 2021 Nov; 143():112236. PubMed ID: 34649360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]