These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36161900)

  • 21. Earthicle: The Design of a Conceptually New Type of Particle.
    Uskoković V; Pernal S; Wu VM
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1305-1321. PubMed ID: 28009506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fe(II)-mediated reduction and repartitioning of structurally incorporated Cu, Co, and Mn in iron oxides.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Oct; 46(20):11070-7. PubMed ID: 22970760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermodynamic controls on rates of iron oxide reduction by extracellular electron shuttles.
    Aeppli M; Giroud S; Vranic S; Voegelin A; Hofstetter TB; Sander M
    Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35017303
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial reduction of Fe(III) in hematite nanoparticles by Geobacter sulfurreducens.
    Yan B; Wrenn BA; Basak S; Biswas P; Giammar DE
    Environ Sci Technol; 2008 Sep; 42(17):6526-31. PubMed ID: 18800525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of Organic Ligands on the Redox Properties of Fe(II) as Determined by Mediated Electrochemical Oxidation.
    Hudson JM; Luther GW; Chin YP
    Environ Sci Technol; 2022 Jun; 56(12):9123-9132. PubMed ID: 35675652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition.
    Garg S; Wang K; Waite TD
    Environ Sci Technol; 2017 May; 51(10):5500-5510. PubMed ID: 28412817
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of magnetite stoichiometry on Fe(II) uptake and nitrobenzene reduction.
    Gorski CA; Scherer MM
    Environ Sci Technol; 2009 May; 43(10):3675-80. PubMed ID: 19544872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iron-mediated reduction rates and pathways of halogenated methanes with nanoscale Pd/Fe: analysis of linear free energy relationship.
    Feng J; Lim TT
    Chemosphere; 2007 Jan; 66(9):1765-74. PubMed ID: 16899274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of surface complexation modeling to the reactivity of iron(II) with nitroaromatic and oxime carbamate contaminants in aqueous TiO2 suspensions.
    Nano GV; Strathmann TJ
    J Colloid Interface Sci; 2008 May; 321(2):350-9. PubMed ID: 18342323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor.
    Li Y; Machala L; Yan W
    Environ Sci Technol; 2016 Feb; 50(3):1190-9. PubMed ID: 26713453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides.
    Jeon BH; Dempsey BA; Burgos WD
    Environ Sci Technol; 2003 Aug; 37(15):3309-15. PubMed ID: 12966975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DLVO and XDLVO calculations for bacteriophage MS2 adhesion to iron oxide particles.
    Park JA; Kim SB
    J Contam Hydrol; 2015 Oct; 181():131-40. PubMed ID: 25704059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides.
    Pecher K; Haderlein SB; Schwarzenbach RP
    Environ Sci Technol; 2002 Apr; 36(8):1734-41. PubMed ID: 11993871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anomalous electrochemical dissolution and passivation of iron growth catalysts in carbon nanotubes.
    Lyon JL; Stevenson KJ
    Langmuir; 2007 Oct; 23(22):11311-8. PubMed ID: 17910488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measuring the reactivity of commercially available zero-valent iron nanoparticles used for environmental remediation with iopromide.
    Schmid D; Micić V; Laumann S; Hofmann T
    J Contam Hydrol; 2015 Oct; 181():36-45. PubMed ID: 25708601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate.
    Liu C; Zachara JM; Foster NS; Strickland J
    Environ Sci Technol; 2007 Nov; 41(22):7730-5. PubMed ID: 18075081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of iron oxide nanoparticles for immobilizing phosphorus in-situ: Increase in soil reactive surface area and effect on soluble phosphorus.
    Koopmans GF; Hiemstra T; Vaseur C; Chardon WJ; Voegelin A; Groenenberg JE
    Sci Total Environ; 2020 Apr; 711():135220. PubMed ID: 31831238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.
    Gorski CA; Klüpfel LE; Voegelin A; Sander M; Hofstetter TB
    Environ Sci Technol; 2013; 47(23):13477-85. PubMed ID: 24219773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stability of dispersions of colloidal hematite/yttrium oxide core-shell particles.
    Plaza RC; Quirantes A; Delgado AV
    J Colloid Interface Sci; 2002 Aug; 252(1):102-8. PubMed ID: 16290768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.