These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 36161938)
1. Rpd3 regulates single-copy origins independently of the rDNA array by opposing Fkh1-mediated origin stimulation. He Y; Petrie MV; Zhang H; Peace JM; Aparicio OM Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2212134119. PubMed ID: 36161938 [TBL] [Abstract][Full Text] [Related]
2. The histone deacetylases sir2 and rpd3 act on ribosomal DNA to control the replication program in budding yeast. Yoshida K; Bacal J; Desmarais D; Padioleau I; Tsaponina O; Chabes A; Pantesco V; Dubois E; Parrinello H; Skrzypczak M; Ginalski K; Lengronne A; Pasero P Mol Cell; 2014 May; 54(4):691-7. PubMed ID: 24856221 [TBL] [Abstract][Full Text] [Related]
3. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Aparicio JG; Viggiani CJ; Gibson DG; Aparicio OM Mol Cell Biol; 2004 Jun; 24(11):4769-80. PubMed ID: 15143171 [TBL] [Abstract][Full Text] [Related]
4. Conversion of a replication origin to a silencer through a pathway shared by a Forkhead transcription factor and an S phase cyclin. Casey L; Patterson EE; Müller U; Fox CA Mol Biol Cell; 2008 Feb; 19(2):608-22. PubMed ID: 18045995 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Knott SR; Viggiani CJ; Tavaré S; Aparicio OM Genes Dev; 2009 May; 23(9):1077-90. PubMed ID: 19417103 [TBL] [Abstract][Full Text] [Related]
6. Quantitative BrdU immunoprecipitation method demonstrates that Fkh1 and Fkh2 are rate-limiting activators of replication origins that reprogram replication timing in G1 phase. Peace JM; Villwock SK; Zeytounian JL; Gan Y; Aparicio OM Genome Res; 2016 Mar; 26(3):365-75. PubMed ID: 26728715 [TBL] [Abstract][Full Text] [Related]
7. Dbf4 recruitment by forkhead transcription factors defines an upstream rate-limiting step in determining origin firing timing. Fang D; Lengronne A; Shi D; Forey R; Skrzypczak M; Ginalski K; Yan C; Wang X; Cao Q; Pasero P; Lou H Genes Dev; 2017 Dec; 31(23-24):2405-2415. PubMed ID: 29330352 [TBL] [Abstract][Full Text] [Related]
8. Dynamic relocalization of replication origins by Fkh1 requires execution of DDK function and Cdc45 loading at origins. Zhang H; Petrie MV; He Y; Peace JM; Chiolo IE; Aparicio OM Elife; 2019 May; 8():. PubMed ID: 31084713 [TBL] [Abstract][Full Text] [Related]
9. Dbf4 Zn-Finger Motif Is Specifically Required for Stimulation of Ctf19-Activated Origins in Petrie MV; Zhang H; Arnold EM; Gan Y; Aparicio OM Genes (Basel); 2022 Nov; 13(12):. PubMed ID: 36553469 [TBL] [Abstract][Full Text] [Related]
10. Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Knott SR; Peace JM; Ostrow AZ; Gan Y; Rex AE; Viggiani CJ; Tavaré S; Aparicio OM Cell; 2012 Jan; 148(1-2):99-111. PubMed ID: 22265405 [TBL] [Abstract][Full Text] [Related]
11. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. Mantiero D; Mackenzie A; Donaldson A; Zegerman P EMBO J; 2011 Nov; 30(23):4805-14. PubMed ID: 22081107 [TBL] [Abstract][Full Text] [Related]
12. Recruitment of Fkh1 to replication origins requires precisely positioned Fkh1/2 binding sites and concurrent assembly of the pre-replicative complex. Reinapae A; Jalakas K; Avvakumov N; Lõoke M; Kristjuhan K; Kristjuhan A PLoS Genet; 2017 Jan; 13(1):e1006588. PubMed ID: 28141805 [TBL] [Abstract][Full Text] [Related]
13. Conserved forkhead dimerization motif controls DNA replication timing and spatial organization of chromosomes in Ostrow AZ; Kalhor R; Gan Y; Villwock SK; Linke C; Barberis M; Chen L; Aparicio OM Proc Natl Acad Sci U S A; 2017 Mar; 114(12):E2411-E2419. PubMed ID: 28265091 [TBL] [Abstract][Full Text] [Related]
14. Behavior of replication origins in Eukaryota - spatio-temporal dynamics of licensing and firing. Musiałek MW; Rybaczek D Cell Cycle; 2015; 14(14):2251-64. PubMed ID: 26030591 [TBL] [Abstract][Full Text] [Related]
15. Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics. Ostrow AZ; Nellimoottil T; Knott SR; Fox CA; Tavaré S; Aparicio OM PLoS One; 2014; 9(2):e87647. PubMed ID: 24504085 [TBL] [Abstract][Full Text] [Related]
16. Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae. Kim S; Benguria A; Lai CY; Jazwinski SM Mol Biol Cell; 1999 Oct; 10(10):3125-36. PubMed ID: 10512855 [TBL] [Abstract][Full Text] [Related]
18. Identification of Fkh1 and Fkh2 binding site variants associated with dynamically bound DNA elements including replication origins. Ostrow AZ; Aparicio OM Nucleus; 2017 Nov; 8(6):600-604. PubMed ID: 29099275 [TBL] [Abstract][Full Text] [Related]
19. The Fkh1 Forkhead associated domain promotes ORC binding to a subset of DNA replication origins in budding yeast. Hoggard T; Hollatz AJ; Cherney RE; Seman MR; Fox CA Nucleic Acids Res; 2021 Oct; 49(18):10207-10220. PubMed ID: 34095951 [TBL] [Abstract][Full Text] [Related]
20. Structural changes in Mcm5 protein bypass Cdc7-Dbf4 function and reduce replication origin efficiency in Saccharomyces cerevisiae. Hoang ML; Leon RP; Pessoa-Brandao L; Hunt S; Raghuraman MK; Fangman WL; Brewer BJ; Sclafani RA Mol Cell Biol; 2007 Nov; 27(21):7594-602. PubMed ID: 17724082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]