These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 36161972)

  • 21. Serious games for upper limb rehabilitation: a systematic review.
    Proença JP; Quaresma C; Vieira P
    Disabil Rehabil Assist Technol; 2018 Jan; 13(1):95-100. PubMed ID: 28359181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of cervical posture improvement of children with cerebral palsy after physical therapy based on head movements and serious games.
    Velasco MA; Raya R; Muzzioli L; Morelli D; Otero A; Iosa M; Cincotti F; Rocon E
    Biomed Eng Online; 2017 Aug; 16(Suppl 1):74. PubMed ID: 28830552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Virtual reality for stroke rehabilitation.
    Laver KE; George S; Thomas S; Deutsch JE; Crotty M
    Cochrane Database Syst Rev; 2011 Sep; (9):CD008349. PubMed ID: 21901720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Formula: see text]Is active video gaming associated with improvements in social behaviors in children with neurodevelopmental disorders: a systematic review.
    Rafiei Milajerdi H; Ordooiazar F; Dewey D
    Child Neuropsychol; 2023 Jan; 29(1):1-27. PubMed ID: 35236234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Motion interactive video games in home training for children with cerebral palsy: parents' perceptions.
    Sandlund M; Dock K; Häger CK; Waterworth EL
    Disabil Rehabil; 2012; 34(11):925-33. PubMed ID: 22066685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feasibility of school-based computer-assisted robotic gaming technology for upper limb rehabilitation of children with cerebral palsy.
    Preston N; Weightman A; Gallagher J; Holt R; Clarke M; Mon-Williams M; Levesley M; Bhakta B
    Disabil Rehabil Assist Technol; 2016; 11(4):281-8. PubMed ID: 24964205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Home-based Nintendo Wii training to improve upper-limb function in children ages 7 to 12 with spastic hemiplegic cerebral palsy.
    Kassee C; Hunt C; Holmes MWR; Lloyd M
    J Pediatr Rehabil Med; 2017 May; 10(2):145-154. PubMed ID: 28582885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Personalized balance games for children with cerebral palsy: A pilot study.
    Kachmar O; Kushnir A; Fedchyshyn B; Cristiano J; O'Flaherty J; Helland K; Johnson G; Puig D
    J Pediatr Rehabil Med; 2021; 14(2):237-245. PubMed ID: 33720857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Personalisation of a virtual gaming system for children with motor impairments: performance and usability.
    Tresser S; Kuflik T; Levin I; Weiss PL
    Disabil Rehabil Assist Technol; 2023 Aug; 18(6):876-882. PubMed ID: 34270909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy--a case study series.
    Burdea GC; Cioi D; Kale A; Janes WE; Ross SA; Engsberg JR
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):165-73. PubMed ID: 22773059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptation and Validation of a Serious Game for Motor Learning Training in Children with Cerebral Palsy.
    Bautista JD; Perales FJ; Ramis S; Montoya P; Riquelme I
    Games Health J; 2023 Dec; 12(6):480-488. PubMed ID: 37449840
    [No Abstract]   [Full Text] [Related]  

  • 32. Virtual reality for stroke rehabilitation.
    Laver KE; Lange B; George S; Deutsch JE; Saposnik G; Crotty M
    Cochrane Database Syst Rev; 2017 Nov; 11(11):CD008349. PubMed ID: 29156493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Virtual reality for stroke rehabilitation.
    Laver KE; George S; Thomas S; Deutsch JE; Crotty M
    Cochrane Database Syst Rev; 2015 Feb; 2015(2):CD008349. PubMed ID: 25927099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lower Limb Sensorimotor Training (LoSenseT) for Children and Adolescents with Cerebral Palsy: A Brief Report of a Feasibility Randomized Protocol.
    Santana CAS; Tudella E; Rocha NACF; de Campos AC
    Dev Neurorehabil; 2021 May; 24(4):276-286. PubMed ID: 33393402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The physiological and biochemical effects of gaming: A review.
    Krarup KB; Krarup HB
    Environ Res; 2020 May; 184():109344. PubMed ID: 32199319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Games Used With Serious Purposes: A Systematic Review of Interventions in Patients With Cerebral Palsy.
    Lopes S; Magalhães P; Pereira A; Martins J; Magalhães C; Chaleta E; Rosário P
    Front Psychol; 2018; 9():1712. PubMed ID: 30283377
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of a Gaming Platform on Balance Training for Children With Cerebral Palsy.
    Hsieh HC
    Pediatr Phys Ther; 2018 Oct; 30(4):303-308. PubMed ID: 30199515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conceptual Ambiguity Surrounding Gamification and Serious Games in Health Care: Literature Review and Development of Game-Based Intervention Reporting Guidelines (GAMING).
    Warsinsky S; Schmidt-Kraepelin M; Rank S; Thiebes S; Sunyaev A
    J Med Internet Res; 2021 Sep; 23(9):e30390. PubMed ID: 34505840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy.
    Deutsch JE; Borbely M; Filler J; Huhn K; Guarrera-Bowlby P
    Phys Ther; 2008 Oct; 88(10):1196-207. PubMed ID: 18689607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Serious Gaming During Multidisciplinary Rehabilitation for Patients With Chronic Pain or Fatigue Symptoms: Mixed Methods Design of a Realist Process Evaluation.
    Vugts MA; Zedlitz AM; Joosen MC; Vrijhoef HJ
    J Med Internet Res; 2020 Mar; 22(3):e14766. PubMed ID: 32149720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.