These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36162152)

  • 21. Adaptive evolution of gamete-recognition proteins in birds.
    Berlin S; Qu L; Ellegren H
    J Mol Evol; 2008 Nov; 67(5):488-96. PubMed ID: 18850060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein evolution speed depends on its stability and abundance and on chaperone concentrations.
    Agozzino L; Dill KA
    Proc Natl Acad Sci U S A; 2018 Sep; 115(37):9092-9097. PubMed ID: 30150386
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The proteins of linked genes evolve at similar rates.
    Williams EJ; Hurst LD
    Nature; 2000 Oct; 407(6806):900-3. PubMed ID: 11057667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolutionary constraints on yeast protein size.
    Warringer J; Blomberg A
    BMC Evol Biol; 2006 Aug; 6():61. PubMed ID: 16911784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Essentiality Is a Strong Determinant of Protein Rates of Evolution during Mutation Accumulation Experiments in Escherichia coli.
    Alvarez-Ponce D; Sabater-Muñoz B; Toft C; Ruiz-González MX; Fares MA
    Genome Biol Evol; 2016 Sep; 8(9):2914-2927. PubMed ID: 27566759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strong evolutionary conservation of broadly expressed protein isoforms in the troponin I gene family and other vertebrate gene families.
    Hastings KE
    J Mol Evol; 1996 Jun; 42(6):631-40. PubMed ID: 8662015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly abundant proteins favor more stable 3D structures in yeast.
    Serohijos AW; Lee SY; Shakhnovich EI
    Biophys J; 2013 Feb; 104(3):L1-3. PubMed ID: 23442924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Why proteins evolve at different rates: the functional hypothesis versus the mistranslation-induced protein misfolding hypothesis.
    Park D; Choi SS
    FEBS Lett; 2009 Apr; 583(7):1053-9. PubMed ID: 19254718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression level, evolutionary rate, and the cost of expression.
    Cherry JL
    Genome Biol Evol; 2010; 2():757-69. PubMed ID: 20884723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for the concerted evolution between short linear protein motifs and their flanking regions.
    Chica C; Diella F; Gibson TJ
    PLoS One; 2009 Jul; 4(7):e6052. PubMed ID: 19584925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perspectives on protein evolution from simple exact models.
    Chan HS; Bornberg-Bauer E
    Appl Bioinformatics; 2002; 1(3):121-44. PubMed ID: 15130840
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Point mutations in protein globular domains: contributions from function, stability and misfolding.
    Sánchez IE; Tejero J; Gómez-Moreno C; Medina M; Serrano L
    J Mol Biol; 2006 Oct; 363(2):422-32. PubMed ID: 16978645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Secreted Proteins Defy the Expression Level-Evolutionary Rate Anticorrelation.
    Feyertag F; Berninsone PM; Alvarez-Ponce D
    Mol Biol Evol; 2017 Mar; 34(3):692-706. PubMed ID: 28007979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression Differentiation Is Constrained to Low-Expression Proteins over Ecological Timescales.
    Margres MJ; Wray KP; Seavy M; McGivern JJ; Herrera ND; Rokyta DR
    Genetics; 2016 Jan; 202(1):273-83. PubMed ID: 26546003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chaperone client proteins evolve slower than non-client proteins.
    Victor MP; Acharya D; Chakraborty S; Ghosh TC
    Funct Integr Genomics; 2020 Sep; 20(5):621-631. PubMed ID: 32377887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective constraints, amino acid composition, and the rate of protein evolution.
    Tourasse NJ; Li WH
    Mol Biol Evol; 2000 Apr; 17(4):656-64. PubMed ID: 10742056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using evolutionary rates to investigate protein functional divergence and conservation. A case study of the carbonic anhydrases.
    Knudsen B; Miyamoto MM; Laipis PJ; Silverman DN
    Genetics; 2003 Aug; 164(4):1261-9. PubMed ID: 12930737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Negative correlation between expression level and evolutionary rate of long intergenic noncoding RNAs.
    Managadze D; Rogozin IB; Chernikova D; Shabalina SA; Koonin EV
    Genome Biol Evol; 2011; 3():1390-404. PubMed ID: 22071789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of different kinds of essentiality on sequence evolution of human testis proteins.
    Schumacher J; Zischler H; Herlyn H
    Sci Rep; 2017 Mar; 7():43534. PubMed ID: 28272493
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of translational error-induced and error-free misfolding on the rate of protein evolution.
    Yang JR; Zhuang SM; Zhang J
    Mol Syst Biol; 2010 Oct; 6():421. PubMed ID: 20959819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.