BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36162199)

  • 1. Deep-spindle: An automated sleep spindle detection system for analysis of infant sleep spindles.
    Wei L; Ventura S; Ryan MA; Mathieson S; Boylan GB; Lowery M; Mooney C
    Comput Biol Med; 2022 Nov; 150():106096. PubMed ID: 36162199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spindle-AI: Sleep Spindle Number and Duration Estimation in Infant EEG.
    Wei L; Ventura S; Mathieson S; Boylan G; Lowery M; Mooney C
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):465-474. PubMed ID: 34280088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random Forest-based Algorithm for Sleep Spindle Detection in Infant EEG.
    Wei L; Ventura S; Lowery M; Ryan MA; Mathieson S; Boylan GB; Mooney C
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():58-61. PubMed ID: 33017930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The visual scoring of sleep and arousal in infants and children.
    Grigg-Damberger M; Gozal D; Marcus CL; Quan SF; Rosen CL; Chervin RD; Wise M; Picchietti DL; Sheldon SH; Iber C
    J Clin Sleep Med; 2007 Mar; 3(2):201-40. PubMed ID: 17557427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced sleep spindle identification with neural networks.
    Kaulen L; Schwabedal JTC; Schneider J; Ritter P; Bialonski S
    Sci Rep; 2022 May; 12(1):7686. PubMed ID: 35538137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A personalized semi-automatic sleep spindle detection (PSASD) framework.
    Kafashan M; Gupte G; Kang P; Hyche O; Luong AH; Prateek GV; Ju YS; Palanca BJA
    J Neurosci Methods; 2024 Jul; 407():110064. PubMed ID: 38301832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quiet sleep detection in preterm infants using deep convolutional neural networks.
    Ansari AH; De Wel O; Lavanga M; Caicedo A; Dereymaeker A; Jansen K; Vervisch J; De Vos M; Naulaers G; Van Huffel S
    J Neural Eng; 2018 Dec; 15(6):066006. PubMed ID: 30132438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated real-time EEG sleep spindle detection for brain-state-dependent brain stimulation.
    Hassan U; Feld GB; Bergmann TO
    J Sleep Res; 2022 Dec; 31(6):e13733. PubMed ID: 36130730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Deep Transfer Learning Framework for Sleep Stage Classification with Single-Channel EEG Signals.
    ElMoaqet H; Eid M; Ryalat M; Penzel T
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep learning approach for real-time detection of sleep spindles.
    Kulkarni PM; Xiao Z; Robinson EJ; Jami AS; Zhang J; Zhou H; Henin SE; Liu AA; Osorio RS; Wang J; Chen Z
    J Neural Eng; 2019 Jun; 16(3):036004. PubMed ID: 30790769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spindler: a framework for parametric analysis and detection of spindles in EEG with application to sleep spindles.
    LaRocco J; Franaszczuk PJ; Kerick S; Robbins K
    J Neural Eng; 2018 Dec; 15(6):066015. PubMed ID: 30132445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and comparison of four sleep spindle detection methods.
    Huupponen E; Gómez-Herrero G; Saastamoinen A; Värri A; Hasan J; Himanen SL
    Artif Intell Med; 2007 Jul; 40(3):157-70. PubMed ID: 17555950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expert-level automated sleep staging of long-term scalp electroencephalography recordings using deep learning.
    Abou Jaoude M; Sun H; Pellerin KR; Pavlova M; Sarkis RA; Cash SS; Westover MB; Lam AD
    Sleep; 2020 Nov; 43(11):. PubMed ID: 32478820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of an automated sleep spindle detection method for mouse electroencephalography.
    Uygun DS; Katsuki F; Bolortuya Y; Aguilar DD; McKenna JT; Thankachan S; McCarley RW; Basheer R; Brown RE; Strecker RE; McNally JM
    Sleep; 2019 Feb; 42(2):. PubMed ID: 30476300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep spindles.
    Jankel WR; Niedermeyer E
    J Clin Neurophysiol; 1985 Jan; 2(1):1-35. PubMed ID: 3932462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neonatal sleep stage identification using long short-term memory learning system.
    Fraiwan L; Alkhodari M
    Med Biol Eng Comput; 2020 Jun; 58(6):1383-1391. PubMed ID: 32281071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of gamma band activity to sleep spindle oscillations - a combined EEG/MEG study.
    Weber FD; Supp GG; Klinzing JG; Mölle M; Engel AK; Born J
    Neuroimage; 2021 Jan; 224():117452. PubMed ID: 33059050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplitude normalization applied to an artificial neural network-based automatic sleep spindle detection system.
    Ventouras EM; Panagi M; Tsekou H; Paparrigopoulos TJ; Ktonas PY
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3240-3. PubMed ID: 25570681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of oral temazepam on sleep spindles during non-rapid eye movement sleep: A high-density EEG investigation.
    Plante DT; Goldstein MR; Cook JD; Smith R; Riedner BA; Rumble ME; Jelenchick L; Roth A; Tononi G; Benca RM; Peterson MJ
    Eur Neuropsychopharmacol; 2015 Oct; 25(10):1600-10. PubMed ID: 26195197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization.
    Ray LB; Sockeel S; Soon M; Bore A; Myhr A; Stojanoski B; Cusack R; Owen AM; Doyon J; Fogel SM
    Front Hum Neurosci; 2015; 9():507. PubMed ID: 26441604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.