These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 36162315)
1. Cost effectiveness of nutrient retention in constructed wetlands at a landscape level. Djodjic F; Geranmayeh P; Collentine D; Markensten H; Futter M J Environ Manage; 2022 Dec; 324():116325. PubMed ID: 36162315 [TBL] [Abstract][Full Text] [Related]
2. Optimizing placement of constructed wetlands at landscape scale in order to reduce phosphorus losses. Djodjic F; Geranmayeh P; Markensten H Ambio; 2020 Nov; 49(11):1797-1807. PubMed ID: 32918721 [TBL] [Abstract][Full Text] [Related]
3. Efficiency and plant indication of nitrogen and phosphorus removal in constructed wetlands: A field-scale study in a frost-free area. Ruan W; Cai H; Xu X; Man Y; Wang R; Tai Y; Chen Z; Vymazal J; Chen J; Yang Y; Zhang X Sci Total Environ; 2021 Dec; 799():149301. PubMed ID: 34371418 [TBL] [Abstract][Full Text] [Related]
4. Effectiveness of Exogenous Fe Tian L; Yan B; Ou Y; Liu H; Cheng L; Jiao P Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162498 [TBL] [Abstract][Full Text] [Related]
5. Overview of the state of the art of constructed wetlands for decentralized wastewater management in Brazil. Machado AI; Beretta M; Fragoso R; Duarte E J Environ Manage; 2017 Feb; 187():560-570. PubMed ID: 27865730 [TBL] [Abstract][Full Text] [Related]
6. A novel hybrid coagulation-constructed wetland system for the treatment of dairy wastewater. Mohamed AYA; Siggins A; Healy MG; Ó hUallacháin D; Fenton O; Tuohy P Sci Total Environ; 2022 Nov; 847():157567. PubMed ID: 35882332 [TBL] [Abstract][Full Text] [Related]
7. Microplastics removal mechanisms in constructed wetlands and their impacts on nutrient (nitrogen, phosphorus and carbon) removal: A critical review. Zhang S; Shen C; Zhang F; Wei K; Shan S; Zhao Y; Man YB; Wong MH; Zhang J Sci Total Environ; 2024 Mar; 918():170654. PubMed ID: 38331284 [TBL] [Abstract][Full Text] [Related]
8. Performance of Pinninti R; Kasi V; Sallangi LKSVP; Landa SR; Rathinasamy M; Sangamreddi C; Dandu Radha PR Int J Phytoremediation; 2022; 24(7):684-694. PubMed ID: 34428391 [TBL] [Abstract][Full Text] [Related]
9. Removal of nutrients in various types of constructed wetlands. Vymazal J Sci Total Environ; 2007 Jul; 380(1-3):48-65. PubMed ID: 17078997 [TBL] [Abstract][Full Text] [Related]
10. Performance of subsurface flow constructed wetland mesocosms in enhancing nutrient removal from municipal wastewater in warm tropical environments. Bateganya NL; Kazibwe A; Langergraber G; Okot-Okumu J; Hein T Environ Technol; 2016; 37(8):960-74. PubMed ID: 26387557 [TBL] [Abstract][Full Text] [Related]
11. Performance of different substrates in constructed wetlands planted with E. crassipes treating low-strength sewage under subtropical conditions. Lima MX; Carvalho KQ; Passig FH; Borges AC; Filippe TC; Azevedo JCR; Nagalli A Sci Total Environ; 2018 Jul; 630():1365-1373. PubMed ID: 29554756 [TBL] [Abstract][Full Text] [Related]
12. Optimization of nutrient removal performance of magnesia-containing constructed wetlands: a microcosm study. Wang Y; Shang Z; Lan W; Liang S; Kang X; Hu Z Environ Sci Pollut Res Int; 2021 Nov; 28(41):58583-58591. PubMed ID: 34120283 [TBL] [Abstract][Full Text] [Related]
13. Cost-Effectiveness Analysis of Surface Flow Constructed Wetlands (SFCW) for Nutrient Reduction in Drainage Discharge from Agricultural Fields in Denmark. Gachango FG; Pedersen SM; Kjaergaard C Environ Manage; 2015 Dec; 56(6):1478-86. PubMed ID: 26239649 [TBL] [Abstract][Full Text] [Related]
14. Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands. Cui L; Ouyang Y; Yang W; Huang Z; Xu Q; Yu G J Environ Manage; 2015 Apr; 153():33-9. PubMed ID: 25646674 [TBL] [Abstract][Full Text] [Related]
15. Review: recent developments of substrates for nitrogen and phosphorus removal in CWs treating municipal wastewater. Shen S; Li X; Cheng F; Zha X; Lu X Environ Sci Pollut Res Int; 2020 Aug; 27(24):29837-29855. PubMed ID: 32472508 [TBL] [Abstract][Full Text] [Related]
16. Can we use mine waste as substrate in constructed wetlands to intensify nutrient removal? A critical assessment of key removal mechanisms and long-term environmental risks. Wang R; Zhao X; Wang T; Guo Z; Hu Z; Zhang J; Wu S; Wu H Water Res; 2022 Feb; 210():118009. PubMed ID: 34974341 [TBL] [Abstract][Full Text] [Related]
17. Purification of leachate from sludge treatment beds by subsurface flow constructed wetlands: effects of plants and hydraulic retention time. Hu S; Chen Z; Lv Z; Chen K; Huang L; Zuo X; He J; Chen Y Environ Sci Pollut Res Int; 2019 Feb; 26(6):5769-5781. PubMed ID: 30612364 [TBL] [Abstract][Full Text] [Related]
18. Phosphorus removal in a pilot scale free water surface constructed wetland: hydraulic retention time, seasonality and standing stock evaluation. Baldovi AA; de Barros Aguiar AR; Benassi RF; Vymazal J; de Jesus TA Chemosphere; 2021 Mar; 266():128939. PubMed ID: 33248733 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous removal of organic matters and nutrients from high-strength wastewater in constructed wetlands followed by entrapped algal systems. Gupta S; Srivastava P; Yadav AK Environ Sci Pollut Res Int; 2020 Jan; 27(1):1112-1117. PubMed ID: 31820236 [TBL] [Abstract][Full Text] [Related]
20. Effects of macrophytes on micro - And nanoplastic retention and cycling in constructed wetlands. Huang J; Li R; Ma Y; Cao C; Li X; Han T; Cao M Environ Pollut; 2023 Jun; 326():121259. PubMed ID: 36804147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]