These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 36162470)
21. Identification of volatile organic compound emissions from anthropogenic and biogenic sources based on satellite observation of formaldehyde and glyoxal. Chen Y; Liu C; Su W; Hu Q; Zhang C; Liu H; Yin H Sci Total Environ; 2023 Feb; 859(Pt 1):159997. PubMed ID: 36368395 [TBL] [Abstract][Full Text] [Related]
22. Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China. Wang H; Xiang Z; Wang L; Jing S; Lou S; Tao S; Liu J; Yu M; Li L; Lin L; Chen Y; Wiedensohler A; Chen C Sci Total Environ; 2018 Apr; 621():1300-1309. PubMed ID: 29054635 [TBL] [Abstract][Full Text] [Related]
23. Emission characteristics and reactivity of volatile organic compounds from typical high-energy-consuming industries in North China. Wang R; Wang X; Cheng S; Wang K; Cheng L; Zhu J; Zheng H; Duan W Sci Total Environ; 2022 Feb; 809():151134. PubMed ID: 34695460 [TBL] [Abstract][Full Text] [Related]
24. Air quality and climate connections. Fiore AM; Naik V; Leibensperger EM J Air Waste Manag Assoc; 2015 Jun; 65(6):645-85. PubMed ID: 25976481 [TBL] [Abstract][Full Text] [Related]
25. A comprehensive review on anthropogenic volatile organic compounds (VOCs) emission estimates in China: Comparison and outlook. Li B; Ho SSH; Li X; Guo L; Chen A; Hu L; Yang Y; Chen D; Lin A; Fang X Environ Int; 2021 Nov; 156():106710. PubMed ID: 34144364 [TBL] [Abstract][Full Text] [Related]
26. [Characterization of Ambient Volatile Organic Compounds, Source Apportionment, and the Ozone-NO Wu Y; Mo ZY; Wu QQ; Lu JH; Mao JY; Chen XM; Su SL; Qin W; Liu HL; Wei M Huan Jing Ke Xue; 2023 Jan; 44(1):75-84. PubMed ID: 36635797 [TBL] [Abstract][Full Text] [Related]
27. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change. Campbell P; Zhang Y; Yan F; Lu Z; Streets D Environ Pollut; 2018 Jul; 238():918-930. PubMed ID: 29684896 [TBL] [Abstract][Full Text] [Related]
28. [Research advances on volatile organic compounds emission inventory of plants]. Xie JF; Li YM Huan Jing Ke Xue; 2013 Dec; 34(12):4779-86. PubMed ID: 24640923 [TBL] [Abstract][Full Text] [Related]
29. Assessment of background ozone concentrations in China and implications for using region-specific volatile organic compounds emission abatement to mitigate air pollution. Chen W; Guenther AB; Shao M; Yuan B; Jia S; Mao J; Yan F; Krishnan P; Wang X Environ Pollut; 2022 Jul; 305():119254. PubMed ID: 35390419 [TBL] [Abstract][Full Text] [Related]
30. Drivers of Increasing Ozone during the Two Phases of Clean Air Actions in China 2013-2020. Liu Y; Geng G; Cheng J; Liu Y; Xiao Q; Liu L; Shi Q; Tong D; He K; Zhang Q Environ Sci Technol; 2023 Jun; 57(24):8954-8964. PubMed ID: 37276527 [TBL] [Abstract][Full Text] [Related]
31. [Pollution Characteristics and Source Apportionment of Atmospheric Volatile Organic Compounds in Summer in Yuncheng City]. Wen XY; Zhao WT; Luo SZ; Zhang Q; Wang YT; Ma JJ; Liu XG Huan Jing Ke Xue; 2022 Jun; 43(6):2979-2986. PubMed ID: 35686767 [TBL] [Abstract][Full Text] [Related]
32. [High-resolution Emission Inventory of Reactive Volatile Organic Compounds from Anthropogenic Sources in the Yangtze River Delta Region]. Tian JJ; Ding X; An JY; Li M; Wang X; Huang C Huan Jing Ke Xue; 2023 Jan; 44(1):58-65. PubMed ID: 36635795 [TBL] [Abstract][Full Text] [Related]
33. Characteristics of ambient volatile organic compounds during spring O Chen D; Zhou L; Wang C; Liu H; Qiu Y; Shi G; Song D; Tan Q; Yang F J Environ Sci (China); 2022 Apr; 114():115-125. PubMed ID: 35459477 [TBL] [Abstract][Full Text] [Related]
34. Integrated assessment of volatile organic compounds from industrial biomass boilers in China: emission characteristics, influencing factors, and ozone formation potential. Shi R; Yuan Z; Yang L; Huang D; Ma H Environ Sci Pollut Res Int; 2023 Jan; 30(4):9852-9864. PubMed ID: 36063268 [TBL] [Abstract][Full Text] [Related]
35. Development of North American emission inventories for air quality modeling under climate change. Woo JH; He S; Tagaris E; Liao KJ; Manomaiphiboon K; Amar P; Russell AG J Air Waste Manag Assoc; 2008 Nov; 58(11):1483-94. PubMed ID: 19044164 [TBL] [Abstract][Full Text] [Related]
36. Source apportionments of atmospheric volatile organic compounds in Nanjing, China during high ozone pollution season. Fan MY; Zhang YL; Lin YC; Li L; Xie F; Hu J; Mozaffar A; Cao F Chemosphere; 2021 Jan; 263():128025. PubMed ID: 33297048 [TBL] [Abstract][Full Text] [Related]
37. [Inventory and environmental impact of VOCs emission from the typical anthropogenic sources in Sichuan province]. Han L; Wang XR; He M; Guo WG Huan Jing Ke Xue; 2013 Dec; 34(12):4535-42. PubMed ID: 24640887 [TBL] [Abstract][Full Text] [Related]
38. Ambient volatile organic compounds in tropical environments: Potential sources, composition and impacts - A review. Mohd Hanif N; Limi Hawari NSS; Othman M; Abd Hamid HH; Ahamad F; Uning R; Ooi MCG; Wahab MIA; Sahani M; Latif MT Chemosphere; 2021 Dec; 285():131355. PubMed ID: 34710962 [TBL] [Abstract][Full Text] [Related]
39. Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River Delta, China. Zhang Y; Li R; Fu H; Zhou D; Chen J J Environ Sci (China); 2018 Sep; 71():233-248. PubMed ID: 30195682 [TBL] [Abstract][Full Text] [Related]
40. Long-term trend in surface ozone in Houston-Galveston-Brazoria: Sectoral contributions based on changes in volatile organic compounds. Soleimanian E; Wang Y; Estes M Environ Pollut; 2022 Sep; 308():119647. PubMed ID: 35718047 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]