BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36162506)

  • 1. Two types of type IV P-type ATPases independently re-establish the asymmetrical distribution of phosphatidylserine in plasma membranes.
    Miyata Y; Yamada K; Nagata S; Segawa K
    J Biol Chem; 2022 Nov; 298(11):102527. PubMed ID: 36162506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Type IV P-type ATPases That Work as Plasma Membrane Phospholipid Flippases and Their Regulation by Caspase and Calcium.
    Segawa K; Kurata S; Nagata S
    J Biol Chem; 2016 Jan; 291(2):762-72. PubMed ID: 26567335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipid flippases enable precursor B cells to flee engulfment by macrophages.
    Segawa K; Yanagihashi Y; Yamada K; Suzuki C; Uchiyama Y; Nagata S
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12212-12217. PubMed ID: 30355768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of three P4-phospholipid flippases-atp11a, atp11b, and atp11c in zebrafish (Danio rerio).
    Hawkey-Noble A; Umali J; Fowler G; French CR
    Gene Expr Patterns; 2020 Jun; 36():119115. PubMed ID: 32344036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrates of P4-ATPases: beyond aminophospholipids (phosphatidylserine and phosphatidylethanolamine).
    Shin HW; Takatsu H
    FASEB J; 2019 Mar; 33(3):3087-3096. PubMed ID: 30509129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and functional analyses of disease-associated P4-ATPase phospholipid flippase variants in red blood cells.
    Liou AY; Molday LL; Wang J; Andersen JP; Molday RS
    J Biol Chem; 2019 Apr; 294(17):6809-6821. PubMed ID: 30850395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inefficient development of syncytiotrophoblasts in the
    Ochiai Y; Suzuki C; Segawa K; Uchiyama Y; Nagata S
    Proc Natl Acad Sci U S A; 2022 May; 119(18):e2200582119. PubMed ID: 35476530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure.
    Segawa K; Kurata S; Yanagihashi Y; Brummelkamp TR; Matsuda F; Nagata S
    Science; 2014 Jun; 344(6188):1164-8. PubMed ID: 24904167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic Analysis and Functional Characterization of P4-ATPase Phospholipid Flippases from Murine Tissues.
    Wang J; Molday LL; Hii T; Coleman JA; Wen T; Andersen JP; Molday RS
    Sci Rep; 2018 Jul; 8(1):10795. PubMed ID: 30018401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CDC50A extracellular domain is required for forming a functional complex with and chaperoning phospholipid flippases to the plasma membrane.
    Segawa K; Kurata S; Nagata S
    J Biol Chem; 2018 Feb; 293(6):2172-2182. PubMed ID: 29276178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane.
    Takatsu H; Tanaka G; Segawa K; Suzuki J; Nagata S; Nakayama K; Shin HW
    J Biol Chem; 2014 Nov; 289(48):33543-56. PubMed ID: 25315773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphatidylserine flipping by the P4-ATPase ATP8A2 is electrogenic.
    Tadini-Buoninsegni F; Mikkelsen SA; Mogensen LS; Molday RS; Andersen JP
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16332-16337. PubMed ID: 31371510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sublethal ATP11A mutation associated with neurological deterioration causes aberrant phosphatidylcholine flipping in plasma membranes.
    Segawa K; Kikuchi A; Noji T; Sugiura Y; Hiraga K; Suzuki C; Haginoya K; Kobayashi Y; Matsunaga M; Ochiai Y; Yamada K; Nishimura T; Iwasawa S; Shoji W; Sugihara F; Nishino K; Kosako H; Ikawa M; Uchiyama Y; Suematsu M; Ishikita H; Kure S; Nagata S
    J Clin Invest; 2021 Sep; 131(18):. PubMed ID: 34403372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid specific activation of the murine P4-ATPase Atp8a1 (ATPase II).
    Paterson JK; Renkema K; Burden L; Halleck MS; Schlegel RA; Williamson P; Daleke DL
    Biochemistry; 2006 Apr; 45(16):5367-76. PubMed ID: 16618126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Essential Neo1 Protein from Budding Yeast Plays a Role in Establishing Aminophospholipid Asymmetry of the Plasma Membrane.
    Takar M; Wu Y; Graham TR
    J Biol Chem; 2016 Jul; 291(30):15727-39. PubMed ID: 27235400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP11C mutation is responsible for the defect in phosphatidylserine uptake in UPS-1 cells.
    Takada N; Takatsu H; Miyano R; Nakayama K; Shin HW
    J Lipid Res; 2015 Nov; 56(11):2151-7. PubMed ID: 26420878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type IV P-type ATPases distinguish mono- versus diacyl phosphatidylserine using a cytofacial exit gate in the membrane domain.
    Baldridge RD; Xu P; Graham TR
    J Biol Chem; 2013 Jul; 288(27):19516-27. PubMed ID: 23709217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of P4 ATPase Phospholipid Translocases (Flippases) in Human and Rat Pancreatic Beta Cells: THEIR GENE SILENCING INHIBITS INSULIN SECRETION.
    Ansari IU; Longacre MJ; Paulusma CC; Stoker SW; Kendrick MA; MacDonald MJ
    J Biol Chem; 2015 Sep; 290(38):23110-23. PubMed ID: 26240149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP11C Facilitates Phospholipid Translocation across the Plasma Membrane of All Leukocytes.
    Yabas M; Jing W; Shafik S; Bröer S; Enders A
    PLoS One; 2016; 11(1):e0146774. PubMed ID: 26799398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The N- or C-terminal cytoplasmic regions of P4-ATPases determine their cellular localization.
    Okamoto S; Naito T; Shigetomi R; Kosugi Y; Nakayama K; Takatsu H; Shin HW
    Mol Biol Cell; 2020 Sep; 31(19):2115-2124. PubMed ID: 32614659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.