These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36162954)

  • 1. Identification of a cytochrome P450 from Tripterygium hypoglaucum (Levl.) Hutch that catalyzes polpunonic acid formation in celastrol biosynthesis.
    Chen XC; Lu Y; Liu Y; Zhou JW; Zhang YF; Gao HY; Li D; Gao W
    Chin J Nat Med; 2022 Sep; 20(9):691-700. PubMed ID: 36162954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating pathway elucidation with yeast engineering to produce polpunonic acid the precursor of the anti-obesity agent celastrol.
    Hansen NL; Miettinen K; Zhao Y; Ignea C; Andreadelli A; Raadam MH; Makris AM; Møller BL; Stærk D; Bak S; Kampranis SC
    Microb Cell Fact; 2020 Jan; 19(1):15. PubMed ID: 31992268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochrome P450 catalyses the 29-carboxyl group formation of celastrol.
    Zhou J; Hu T; Liu Y; Tu L; Song Y; Lu Y; Zhang Y; Tong Y; Zhao Y; Su P; Wu X; Huang L; Gao W
    Phytochemistry; 2021 Oct; 190():112868. PubMed ID: 34273756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Friedelane-type triterpene cyclase in celastrol biosynthesis from Tripterygium wilfordii and its application for triterpenes biosynthesis in yeast.
    Zhou J; Hu T; Gao L; Su P; Zhang Y; Zhao Y; Chen S; Tu L; Song Y; Wang X; Huang L; Gao W
    New Phytol; 2019 Jul; 223(2):722-735. PubMed ID: 30895623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the Cytochrome P450 CYP716C52 in Celastrol Biosynthesis and Its Applications in Engineered
    Lu Y; Liu Y; Zhang Y; Gao H; Chen X; Tu L; Luo Y; Jiang Z; Yin Y; Zhou J; Hu T; Wu X; Wang J; Gao W; Huang L
    J Nat Prod; 2024 Feb; 87(2):176-185. PubMed ID: 38277488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the functions of friedelane-type triterpene cyclases from four celastrol-producing plants.
    Lu Y; Luo Y; Zhou J; Hu T; Tu L; Tong Y; Su P; Liu Y; Wang J; Jiang Z; Wu X; Chen X; Huang L; Gao W
    Plant J; 2022 Feb; 109(3):555-567. PubMed ID: 34750899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total alkaloids of Tripterygium hypoglaucum (levl.) Hutch inhibits tumor growth both in vitro and in vivo.
    Jiang X; Huang XC; Ao L; Liu WB; Han F; Cao J; Zhang DY; Huang CS; Liu JY
    J Ethnopharmacol; 2014; 151(1):292-8. PubMed ID: 24212079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis and biotechnological production of the anti-obesity agent celastrol.
    Zhao Y; Hansen NL; Duan YT; Prasad M; Motawia MS; Møller BL; Pateraki I; Staerk D; Bak S; Miettinen K; Kampranis SC
    Nat Chem; 2023 Sep; 15(9):1236-1246. PubMed ID: 37365337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Celastrol: A century-long journey from the isolation to the biotechnological production and the development of an antiobesity drug.
    Zhao Y; Miettinen K; Kampranis SC
    Curr Opin Plant Biol; 2024 Oct; 81():102615. PubMed ID: 39128271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CYP712K4 Catalyzes the C-29 Oxidation of Friedelin in the Maytenus ilicifolia Quinone Methide Triterpenoid Biosynthesis Pathway.
    Bicalho KU; Santoni MM; Arendt P; Zanelli CF; Furlan M; Goossens A; Pollier J
    Plant Cell Physiol; 2019 Nov; 60(11):2510-2522. PubMed ID: 31350564
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Zhao J; Zhang F; Xiao X; Wu Z; Hu Q; Jiang Y; Zhang W; Wei S; Ma X; Zhang X
    Front Pharmacol; 2021; 12():715359. PubMed ID: 34887747
    [No Abstract]   [Full Text] [Related]  

  • 12. Identification and functional characterization of squalene epoxidases and oxidosqualene cyclases from Tripterygium wilfordii.
    Liu Y; Zhou J; Hu T; Lu Y; Gao L; Tu L; Gao J; Huang L; Gao W
    Plant Cell Rep; 2020 Mar; 39(3):409-418. PubMed ID: 31838574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression and RNAi-mediated downregulation of TwIDI regulates triptolide and celastrol accumulation in Tripterygium wilfordii.
    Wang J; Zhao Y; Zhang Y; Su P; Hu T; Lu Y; Zhang R; Zhou J; Ma B; Gao W; Huang L
    Gene; 2018 Dec; 679():195-201. PubMed ID: 30194986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Glutamine-Glutamate/GABA cycle and potential target GLUD2 in alleviation of rheumatoid arthritis by Tripterygium hypoglaucum (levl.) Hutch based on metabolomics and molecular pharmacology.
    Long C; Yang Y; Wang Y; Zhang X; Zhang L; Huang S; Yang D; Qiao X; Yang Y; Guo Y
    J Ethnopharmacol; 2021 Dec; 281():114561. PubMed ID: 34454056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis, total synthesis, structural modifications, bioactivity, and mechanism of action of the quinone-methide triterpenoid celastrol.
    Lu Y; Liu Y; Zhou J; Li D; Gao W
    Med Res Rev; 2021 Mar; 41(2):1022-1060. PubMed ID: 33174200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis.
    Tu L; Su P; Zhang Z; Gao L; Wang J; Hu T; Zhou J; Zhang Y; Zhao Y; Liu Y; Song Y; Tong Y; Lu Y; Yang J; Xu C; Jia M; Peters RJ; Huang L; Gao W
    Nat Commun; 2020 Feb; 11(1):971. PubMed ID: 32080175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory mechanisms of celastrol on human liver cytochrome P450 1A2, 2C19, 2D6, 2E1 and 3A4.
    Jin C; He X; Zhang F; He L; Chen J; Wang L; An L; Fan Y
    Xenobiotica; 2015; 45(7):571-7. PubMed ID: 25811791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network Pharmacology and Experimental Validation to Explore That Celastrol Targeting PTEN is the Potential Mechanism of
    Zhao J; Liu H; Xia M; Chen Q; Wan L; Leng B; Tang C; Chen G; Liu Y; Zhang L; Liu H
    Drug Des Devel Ther; 2023; 17():887-900. PubMed ID: 36992900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.
    Andre CM; Legay S; Deleruelle A; Nieuwenhuizen N; Punter M; Brendolise C; Cooney JM; Lateur M; Hausman JF; Larondelle Y; Laing WA
    New Phytol; 2016 Sep; 211(4):1279-94. PubMed ID: 27214242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Studies on the chemical constituents of Tripterygium hypoglaucum (Lévl) Hutch].
    Zhang L; Zhang ZX; An DK; Kong C
    Yao Xue Xue Bao; 1991; 26(7):515-8. PubMed ID: 1805509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.