These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 36162979)
1. Theoretical accuracy for indirect predictions based on SNP effects from single-step GBLUP. Garcia A; Aguilar I; Legarra A; Tsuruta S; Misztal I; Lourenco D Genet Sel Evol; 2022 Sep; 54(1):66. PubMed ID: 36162979 [TBL] [Abstract][Full Text] [Related]
2. Indirect predictions with a large number of genotyped animals using the algorithm for proven and young. Garcia ALS; Masuda Y; Tsuruta S; Miller S; Misztal I; Lourenco D J Anim Sci; 2020 Jun; 98(6):. PubMed ID: 32374831 [TBL] [Abstract][Full Text] [Related]
3. Development of genomic predictions for Angus cattle in Brazil incorporating genotypes from related American sires. Campos GS; Cardoso FF; Gomes CCG; Domingues R; de Almeida Regitano LC; de Sena Oliveira MC; de Oliveira HN; Carvalheiro R; Albuquerque LG; Miller S; Misztal I; Lourenco D J Anim Sci; 2022 Feb; 100(2):. PubMed ID: 35031806 [TBL] [Abstract][Full Text] [Related]
4. Efficient large-scale single-step evaluations and indirect genomic prediction of genotyped selection candidates. Vandenplas J; Ten Napel J; Darbaghshahi SN; Evans R; Calus MPL; Veerkamp R; Cromie A; Mäntysaari EA; Strandén I Genet Sel Evol; 2023 Jun; 55(1):37. PubMed ID: 37291510 [TBL] [Abstract][Full Text] [Related]
5. Efficient approximation of reliabilities for single-step genomic best linear unbiased predictor models with the Algorithm for Proven and Young. Bermann M; Lourenco D; Misztal I J Anim Sci; 2022 Jan; 100(1):. PubMed ID: 34877603 [TBL] [Abstract][Full Text] [Related]
6. Comparing algorithms to approximate accuracies for single-step genomic best linear unbiased predictor. Ramos P; Garcia A; Retallik K; Bermann M; Tsuruta S; Misztal I; Veroneze R; Lourenco D J Anim Sci; 2024 Jan; 102():. PubMed ID: 39011991 [TBL] [Abstract][Full Text] [Related]
7. Current status of genomic evaluation. Misztal I; Lourenco D; Legarra A J Anim Sci; 2020 Apr; 98(4):. PubMed ID: 32267923 [TBL] [Abstract][Full Text] [Related]
8. A comprehensive study on size and definition of the core group in the proven and young algorithm for single-step GBLUP. Abdollahi-Arpanahi R; Lourenco D; Misztal I Genet Sel Evol; 2022 May; 54(1):34. PubMed ID: 35596130 [TBL] [Abstract][Full Text] [Related]
9. Invited review: Unknown-parent groups and metafounders in single-step genomic BLUP. Masuda Y; VanRaden PM; Tsuruta S; Lourenco DAL; Misztal I J Dairy Sci; 2022 Feb; 105(2):923-939. PubMed ID: 34799109 [TBL] [Abstract][Full Text] [Related]
10. Empirical comparison between different methods for genomic prediction of number of piglets born alive in moderate sized breeding populations. Fangmann A; Sharifi RA; Heinkel J; Danowski K; Schrade H; Erbe M; Simianer H J Anim Sci; 2017 Apr; 95(4):1434-1443. PubMed ID: 28464085 [TBL] [Abstract][Full Text] [Related]
11. Leveraging low-density crossbred genotypes to offset crossbred phenotypes and their impact on purebred predictions. Leite NG; Chen CY; Herring WO; Holl J; Tsuruta S; Lourenco D J Anim Sci; 2022 Dec; 100(12):. PubMed ID: 36309902 [TBL] [Abstract][Full Text] [Related]
12. Is single-step genomic REML with the algorithm for proven and young more computationally efficient when less generations of data are present? Junqueira VS; Lourenco D; Masuda Y; Cardoso FF; Lopes PS; Silva FFE; Misztal I J Anim Sci; 2022 May; 100(5):. PubMed ID: 35289906 [TBL] [Abstract][Full Text] [Related]
13. Core-dependent changes in genomic predictions using the Algorithm for Proven and Young in single-step genomic best linear unbiased prediction. Misztal I; Tsuruta S; Pocrnic I; Lourenco D J Anim Sci; 2020 Dec; 98(12):. PubMed ID: 33211798 [TBL] [Abstract][Full Text] [Related]
14. Marker effect p-values for single-step GWAS with the algorithm for proven and young in large genotyped populations. Leite NG; Bermann M; Tsuruta S; Misztal I; Lourenco D Genet Sel Evol; 2024 Aug; 56(1):59. PubMed ID: 39174924 [TBL] [Abstract][Full Text] [Related]
15. Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus. Lourenco DA; Tsuruta S; Fragomeni BO; Masuda Y; Aguilar I; Legarra A; Bertrand JK; Amen TS; Wang L; Moser DW; Misztal I J Anim Sci; 2015 Jun; 93(6):2653-62. PubMed ID: 26115253 [TBL] [Abstract][Full Text] [Related]
16. Genomic predictions based on haplotypes fitted as pseudo-SNP for milk production and udder type traits and SCS in French dairy goats. Teissier M; Larroque H; Brito LF; Rupp R; Schenkel FS; Robert-Granié C J Dairy Sci; 2020 Dec; 103(12):11559-11573. PubMed ID: 33041034 [TBL] [Abstract][Full Text] [Related]
17. The quality of the algorithm for proven and young with various sets of core animals in a multibreed sheep population1. Nilforooshan MA; Lee M J Anim Sci; 2019 Mar; 97(3):1090-1100. PubMed ID: 30624671 [TBL] [Abstract][Full Text] [Related]
18. Derivation of indirect predictions using genomic recursions across generations in a broiler population. Hidalgo J; Lourenco D; Tsuruta S; Bermann M; Breen V; Misztal I J Anim Sci; 2023 Jan; 101():. PubMed ID: 37837636 [TBL] [Abstract][Full Text] [Related]
19. Reducing computational cost of large-scale genomic evaluation by using indirect genomic prediction. Tsuruta S; Lourenco DAL; Masuda Y; Lawlor TJ; Misztal I JDS Commun; 2021 Nov; 2(6):356-360. PubMed ID: 36337117 [TBL] [Abstract][Full Text] [Related]
20. Changes in genomic predictions when new information is added. Hidalgo J; Lourenco D; Tsuruta S; Masuda Y; Miller S; Bermann M; Garcia ALS; Misztal I J Anim Sci; 2021 Feb; 99(2):. PubMed ID: 33544869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]