These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36163537)

  • 1. Cell-Penetrating Peptides as Passive Permeation Enhancers for Transdermal Drug Delivery.
    Chablani L; Singh V
    AAPS PharmSciTech; 2022 Sep; 23(7):266. PubMed ID: 36163537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-penetrating peptides as a novel transdermal drug delivery system.
    Nasrollahi SA; Taghibiglou C; Azizi E; Farboud ES
    Chem Biol Drug Des; 2012 Nov; 80(5):639-46. PubMed ID: 22846609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Penetration Enhancers for Transdermal Drug Delivery - Success and Challenges.
    Ita KB
    Curr Drug Deliv; 2015; 12(6):645-51. PubMed ID: 26239423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De Novo Design of Skin-Penetrating Peptides for Enhanced Transdermal Delivery of Peptide Drugs.
    Menegatti S; Zakrewsky M; Kumar S; De Oliveira JS; Muraski JA; Mitragotri S
    Adv Healthc Mater; 2016 Mar; 5(5):602-9. PubMed ID: 26799634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery.
    Desai P; Patlolla RR; Singh M
    Mol Membr Biol; 2010 Oct; 27(7):247-59. PubMed ID: 21028936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomaterials as novel penetration enhancers for transdermal and dermal drug delivery systems.
    Chen Y; Wang M; Fang L
    Drug Deliv; 2013; 20(5):199-209. PubMed ID: 23763451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permeation enhancers in transdermal drug delivery: benefits and limitations.
    Kováčik A; Kopečná M; Vávrová K
    Expert Opin Drug Deliv; 2020 Feb; 17(2):145-155. PubMed ID: 31910342
    [No Abstract]   [Full Text] [Related]  

  • 8. Enhanced transdermal delivery of lornoxicam by nanostructured lipid carrier gels modified with polyarginine peptide for treatment of carrageenan-induced rat paw edema.
    Gao S; Tian B; Han J; Zhang J; Shi Y; Lv Q; Li K
    Int J Nanomedicine; 2019; 14():6135-6150. PubMed ID: 31447556
    [No Abstract]   [Full Text] [Related]  

  • 9. Challenges and Strategies for Topical and Transdermal Delivery of Bioactive Peptides.
    Jiménez-Rodríguez A; Guardado-Félix D; Antunes-Ricardo M
    Crit Rev Ther Drug Carrier Syst; 2022; 39(1):1-31. PubMed ID: 34936316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive and active strategies for transdermal delivery using co-encapsulating nanostructured lipid carriers: in vitro vs. in vivo studies.
    Vitorino C; Almeida A; Sousa J; Lamarche I; Gobin P; Marchand S; Couet W; Olivier JC; Pais A
    Eur J Pharm Biopharm; 2014 Feb; 86(2):133-44. PubMed ID: 24333401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Developments in Ionic Liquid-Assisted Topical and Transdermal Drug Delivery.
    Ali MK; Moshikur RM; Goto M; Moniruzzaman M
    Pharm Res; 2022 Oct; 39(10):2335-2351. PubMed ID: 35773446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Permeation enhancers compatible with transdermal drug delivery systems. Part I: selection and formulation considerations.
    Pfister WR; Hsieh DS
    Med Device Technol; 1990; 1(5):48-55. PubMed ID: 10171148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formulation design and development of matrix diffusion controlled transdermal drug delivery of glimepiride.
    Akram MR; Ahmad M; Abrar A; Sarfraz RM; Mahmood A
    Drug Des Devel Ther; 2018; 12():349-364. PubMed ID: 29503528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of peptide-based enhancers for transdermal delivery.
    Lopes LB; Carvalho VF; de Lemos DP
    Curr Pharm Des; 2015; 21(20):2814-22. PubMed ID: 25925116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permeation enhancers compatible with transdermal drug delivery systems: part II: system design considerations.
    Pfister WR; Hsieh DS
    Med Device Technol; 1990; 1(6):28-33. PubMed ID: 10171149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, characterization, and evaluation of novel cell-penetrating peptides based on TD-34.
    Tian T; Zhang X; Sun Y; Li X; Wang Q
    J Pept Sci; 2019 Oct; 25(10):e3205. PubMed ID: 31612571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium diclofenac and cell-penetrating peptides embedded in H(II) mesophases: physical characterization and delivery.
    Cohen-Avrahami M; Libster D; Aserin A; Garti N
    J Phys Chem B; 2011 Sep; 115(34):10189-97. PubMed ID: 21749044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Emerging Role of Ionic Liquid-Based Approaches for Enhanced Skin Permeation of Bioactive Molecules: A Snapshot of the Past Couple of Years.
    Gomes A; Aguiar L; Ferraz R; Teixeira C; Gomes P
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid vesicles: A versatile drug delivery platform for dermal and transdermal applications.
    Chacko IA; Ghate VM; Dsouza L; Lewis SA
    Colloids Surf B Biointerfaces; 2020 Nov; 195():111262. PubMed ID: 32736123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural products as potential drug permeation enhancer in transdermal drug delivery system.
    Patil UK; Saraogi R
    Arch Dermatol Res; 2014 Jul; 306(5):419-26. PubMed ID: 24481830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.