These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36163607)

  • 1. Exercising choice over feedback schedules during practice is not advantageous for motor learning.
    St Germain L; McKay B; Poskus A; Williams A; Leshchyshen O; Feldman S; Cashaback JGA; Carter MJ
    Psychon Bull Rev; 2023 Apr; 30(2):621-633. PubMed ID: 36163607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OPTIMAL practice conditions enhance the benefits of gradually increasing error opportunities on retention of a stepping sequence task.
    Levac D; Driscoll K; Galvez J; Mercado K; O'Neil L
    Hum Mov Sci; 2017 Dec; 56(Pt B):129-138. PubMed ID: 29128736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examining the impact of error estimation on the effects of self-controlled feedback.
    Barros JAC; Yantha ZD; Carter MJ; Hussien J; Ste-Marie DM
    Hum Mov Sci; 2019 Feb; 63():182-198. PubMed ID: 30580207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autonomy support and reduced feedback frequency have trivial effects on learning and performance of a golf putting task.
    McKay B; Ste-Marie DM
    Hum Mov Sci; 2020 Jun; 71():102612. PubMed ID: 32452429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autonomy Support via Instructionally Irrelevant Choice Not Beneficial for Motor Performance or Learning.
    McKay B; Ste-Marie DM
    Res Q Exerc Sport; 2022 Mar; 93(1):64-76. PubMed ID: 32854605
    [No Abstract]   [Full Text] [Related]  

  • 6. Increased perceptions of autonomy through choice fail to enhance motor skill retention.
    St Germain L; Williams A; Balbaa N; Poskus A; Leshchyshen O; Lohse KR; Carter MJ
    J Exp Psychol Hum Percept Perform; 2022 Apr; 48(4):370-379. PubMed ID: 35201814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Choose to move: The motivational impact of autonomy support on motor learning.
    Lewthwaite R; Chiviacowsky S; Drews R; Wulf G
    Psychon Bull Rev; 2015 Oct; 22(5):1383-8. PubMed ID: 25732095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Not all choices are created equal: Task-relevant choices enhance motor learning compared to task-irrelevant choices.
    Carter MJ; Ste-Marie DM
    Psychon Bull Rev; 2017 Dec; 24(6):1879-1888. PubMed ID: 28224481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why self-controlled feedback enhances motor learning: Answers from electroencephalography and indices of motivation.
    Grand KF; Bruzi AT; Dyke FB; Godwin MM; Leiker AM; Thompson AG; Buchanan TL; Miller MW
    Hum Mov Sci; 2015 Oct; 43():23-32. PubMed ID: 26163375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The recommendation for learners to be provided with control over their feedback schedule is questioned in a self-controlled learning paradigm.
    Yantha ZD; McKay B; Ste-Marie DM
    J Sports Sci; 2022 Apr; 40(7):769-782. PubMed ID: 34963413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-controlled feedback is effective if it is based on the learner's performance: a replication and extension of Chiviacowsky and Wulf (2005).
    Carter MJ; Carlsen AN; Ste-Marie DM
    Front Psychol; 2014; 5():1325. PubMed ID: 25477846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An interpolated activity during the knowledge-of-results delay interval eliminates the learning advantages of self-controlled feedback schedules.
    Carter MJ; Ste-Marie DM
    Psychol Res; 2017 Mar; 81(2):399-406. PubMed ID: 26892773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anodal transcranial direct current stimulation over the primary motor cortex does not enhance the learning benefits of self-controlled feedback schedules.
    Carter MJ; Smith V; Carlsen AN; Ste-Marie DM
    Psychol Res; 2018 May; 82(3):496-506. PubMed ID: 28243728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using error-estimation to probe the psychological processes underlying contextual interference effects.
    Thomas JL; Fawver B; Taylor S; Miller MW; Williams AM; Lohse KR
    Hum Mov Sci; 2021 Oct; 79():102854. PubMed ID: 34375844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of autonomous difficulty selection on engagement, motivation, and learning in a motion-controlled video game task.
    Leiker AM; Bruzi AT; Miller MW; Nelson M; Wegman R; Lohse KR
    Hum Mov Sci; 2016 Oct; 49():326-35. PubMed ID: 27551820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lassoing Skill Through Learner Choice.
    Wulf G; Iwatsuki T; Machin B; Kellogg J; Copeland C; Lewthwaite R
    J Mot Behav; 2018; 50(3):285-292. PubMed ID: 28854061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Now you see me, now you don't: Adapting practice through target exclusion negatively impacts motor learning.
    Hodges NJ; Coppola TM; Peters CM; Larssen BC
    Hum Mov Sci; 2021 Oct; 79():102850. PubMed ID: 34364154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-controlled learning benefits: exploring contributions of self-efficacy and intrinsic motivation via path analysis.
    Ste-Marie DM; Carter MJ; Law B; Vertes K; Smith V
    J Sports Sci; 2016 Sep; 34(17):1650-6. PubMed ID: 26707002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-controlled learning: the importance of protecting perceptions of competence.
    Chiviacowsky S; Wulf G; Lewthwaite R
    Front Psychol; 2012; 3():458. PubMed ID: 23130006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motivational effects of enhancing expectancies and autonomy for motor learning: An examination of the OPTIMAL theory.
    Ghorbani S
    J Gen Psychol; 2019; 146(1):79-92. PubMed ID: 30654726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.