BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 36164261)

  • 1. Theoretical and Experimental Investigation of Functionalized Cyanopyridines Yield an Anolyte with an Extremely Low Reduction Potential for Nonaqueous Redox Flow Batteries.
    Vaid TP; Cook ME; Scott JD; Borjesson Carazo M; Ruchti J; Minteer SD; Sigman MS; McNeil AJ; Sanford MS
    Chemistry; 2022 Dec; 28(70):e202202147. PubMed ID: 36164261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Energy Density, Asymmetric, Nonaqueous Redox Flow Batteries without a Supporting Electrolyte.
    Yan Y; Sitaula P; Odom SA; Vaid TP
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36315441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indolo[2,3-
    Zhang W; Walser-Kuntz R; Tracy JS; Schramm TK; Shee J; Head-Gordon M; Chen G; Helms BA; Sanford MS; Toste FD
    J Am Chem Soc; 2023 Aug; 145(34):18877-18887. PubMed ID: 37585274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Iron(III) Tetraphenylporphyrin as a Redox Flow Battery Anolyte: Unexpected Side Reactivity with the Electrolyte.
    Mitchell NH; Elgrishi N
    J Phys Chem C Nanomater Interfaces; 2023 Jun; 127(23):10938-10946. PubMed ID: 37342204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism-Based Design of a High-Potential Catholyte Enables a 3.2 V All-Organic Nonaqueous Redox Flow Battery.
    Yan Y; Robinson SG; Sigman MS; Sanford MS
    J Am Chem Soc; 2019 Sep; 141(38):15301-15306. PubMed ID: 31503480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Evaluation of Diketopyrrolopyrrole Derivatives for Nonaqueous Redox Flow Batteries.
    Sharma S; Rathod S; Prakash Yadav S; Chakraborty A; Shukla AK; Aetukuri N; Patil S
    Chemistry; 2021 Aug; 27(47):12172-12180. PubMed ID: 34041796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism-Based Development of a Low-Potential, Soluble, and Cyclable Multielectron Anolyte for Nonaqueous Redox Flow Batteries.
    Sevov CS; Fisher SL; Thompson LT; Sanford MS
    J Am Chem Soc; 2016 Nov; 138(47):15378-15384. PubMed ID: 27933936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Fe
    Tsitovich PB; Kosswattaarachchi AM; Crawley MR; Tittiris TY; Cook TR; Morrow JR
    Chemistry; 2017 Nov; 23(61):15327-15331. PubMed ID: 28929548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte.
    Zhang C; Ding Y; Zhang L; Wang X; Zhao Y; Zhang X; Yu G
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7454-7459. PubMed ID: 28494114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Engineering of Azobenzene-Based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries.
    Zu X; Zhang L; Qian Y; Zhang C; Yu G
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22163-22170. PubMed ID: 32841494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New phenazine based anolyte material for high voltage organic redox flow batteries.
    Romadina EI; Komarov DS; Stevenson KJ; Troshin PA
    Chem Commun (Camb); 2021 Mar; 57(24):2986-2989. PubMed ID: 33634297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bis(diisopropylamino)cyclopropenium-arene Cations as High Oxidation Potential and High Stability Catholytes for Non-aqueous Redox Flow Batteries.
    Yan Y; Vaid TP; Sanford MS
    J Am Chem Soc; 2020 Oct; 142(41):17564-17571. PubMed ID: 33006474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. POM Anolyte for All-Anion Redox Flow Batteries with High Capacity Retention and Coulombic Efficiency at Mild pH.
    Yang L; Hao Y; Lin J; Li K; Luo S; Lei J; Han Y; Yuan R; Liu G; Ren B; Chen J
    Adv Mater; 2022 Feb; 34(7):e2107425. PubMed ID: 34866255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dithiolene Complexes of First-Row Transition Metals for Symmetric Nonaqueous Redox Flow Batteries.
    Hogue RW; Armstrong CG; Toghill KE
    ChemSusChem; 2019 Oct; 12(19):4506-4515. PubMed ID: 31385645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications.
    Sevov CS; Hickey DP; Cook ME; Robinson SG; Barnett S; Minteer SD; Sigman MS; Sanford MS
    J Am Chem Soc; 2017 Mar; 139(8):2924-2927. PubMed ID: 28219237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Stable Organo-Aluminum Analyte Enables Multielectron Storage for a Nonaqueous Redox Flow Battery.
    Arnold A; Dougherty RJ; Carr CR; Reynolds LC; Fettinger JC; Augustin A; Berben LA
    J Phys Chem Lett; 2020 Oct; 11(19):8202-8207. PubMed ID: 32897076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Highly Stable, Capacity Dense Carboxylate Viologen Anolyte towards Long-Duration Energy Storage.
    Wu W; Wang AP; Luo J; Liu TL
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202216662. PubMed ID: 36526569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blatter Radicals as Bipolar Materials for Symmetrical Redox-Flow Batteries.
    Steen JS; Nuismer JL; Eiva V; Wiglema AET; Daub N; Hjelm J; Otten E
    J Am Chem Soc; 2022 Mar; 144(11):5051-5058. PubMed ID: 35258956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Chalcogenophene Viologens as Anolytes for Long-Life Aqueous Organic Redox Flow Batteries with High Battery Voltage.
    Zhang X; Liu X; Zhang H; Wang Z; Zhang Y; Li G; Li MJ; He G
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48727-48733. PubMed ID: 36257057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.