These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 36164599)

  • 1. Applying SARIMA, ETS, and hybrid models for prediction of tuberculosis incidence rate in Taiwan.
    Kuan MM
    PeerJ; 2022; 10():e13117. PubMed ID: 36164599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonality and Trend Forecasting of Tuberculosis Prevalence Data in Eastern Cape, South Africa, Using a Hybrid Model.
    Azeez A; Obaromi D; Odeyemi A; Ndege J; Muntabayi R
    Int J Environ Res Public Health; 2016 Jul; 13(8):. PubMed ID: 27472353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new hybrid model SARIMA-ETS-SVR for seasonal influenza incidence prediction in mainland China.
    Zhao D; Zhang R
    J Infect Dev Ctries; 2023 Nov; 17(11):1581-1590. PubMed ID: 38064398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model.
    Wang Y; Xu C; Zhang S; Wang Z; Yang L; Zhu Y; Yuan J
    BMJ Open; 2019 Jul; 9(7):e024409. PubMed ID: 31371283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid seasonal prediction model for tuberculosis incidence in China.
    Cao S; Wang F; Tam W; Tse LA; Kim JH; Liu J; Lu Z
    BMC Med Inform Decis Mak; 2013 May; 13():56. PubMed ID: 23638635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China.
    Liao Z; Zhang X; Zhang Y; Peng D
    Interdiscip Sci; 2019 Mar; 11(1):77-85. PubMed ID: 30734907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal behavior and forecasting trends of tuberculosis incidence in Holy Kerbala, Iraq.
    Mohammed SH; Ahmed MM; Al-Mousawi AM; Azeez A
    Int J Mycobacteriol; 2018; 7(4):361-367. PubMed ID: 30531036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical methods for predicting tuberculosis incidence based on data from Guangxi, China.
    Zheng Y; Zhang L; Wang L; Rifhat R
    BMC Infect Dis; 2020 Apr; 20(1):300. PubMed ID: 32321419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Advanced Data-Driven Hybrid Model of SARIMA-NNNAR for Tuberculosis Incidence Time Series Forecasting in Qinghai Province, China.
    Wang Y; Xu C; Li Y; Wu W; Gui L; Ren J; Yao S
    Infect Drug Resist; 2020; 13():867-880. PubMed ID: 32273731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secular Seasonality and Trend Forecasting of Tuberculosis Incidence Rate in China Using the Advanced Error-Trend-Seasonal Framework.
    Wang Y; Xu C; Ren J; Wu W; Zhao X; Chao L; Liang W; Yao S
    Infect Drug Resist; 2020; 13():733-747. PubMed ID: 32184635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hybrid Approach Based on Seasonal Autoregressive Integrated Moving Average and Neural Network Autoregressive Models to Predict Scorpion Sting Incidence in El Oued Province, Algeria, From 2005 to 2020.
    Zenia S; L'Hadj M; Selmane S
    J Res Health Sci; 2023 Sep; 23(3):e00586. PubMed ID: 38315901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical machine learning models for prediction of China's maritime emergency patients in dynamic: ARIMA model, SARIMA model, and dynamic Bayesian network model.
    Yang P; Cheng P; Zhang N; Luo D; Xu B; Zhang H
    Front Public Health; 2024; 12():1401161. PubMed ID: 39022407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forecasting the Tuberculosis Incidence Using a Novel Ensemble Empirical Mode Decomposition-Based Data-Driven Hybrid Model in Tibet, China.
    Li J; Li Y; Ye M; Yao S; Yu C; Wang L; Wu W; Wang Y
    Infect Drug Resist; 2021; 14():1941-1955. PubMed ID: 34079304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of SARIMA model, Holt-winters model and ETS model in predicting the incidence of foodborne disease.
    Xian X; Wang L; Wu X; Tang X; Zhai X; Yu R; Qu L; Ye M
    BMC Infect Dis; 2023 Nov; 23(1):803. PubMed ID: 37974072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-series analysis of tuberculosis from 2005 to 2017 in China.
    Wang H; Tian CW; Wang WM; Luo XM
    Epidemiol Infect; 2018 Jun; 146(8):935-939. PubMed ID: 29708082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidemiology and time series analysis of human brucellosis in Tebessa province, Algeria, from 2000 to 2020.
    Akermi SE; L'Hadj M; Selmane S
    J Res Health Sci; 2022 Mar; 22(1):e00544. PubMed ID: 36511254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time series model for forecasting the number of new admission inpatients.
    Zhou L; Zhao P; Wu D; Cheng C; Huang H
    BMC Med Inform Decis Mak; 2018 Jun; 18(1):39. PubMed ID: 29907102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population.
    Li Z; Wang Z; Song H; Liu Q; He B; Shi P; Ji Y; Xu D; Wang J
    Infect Drug Resist; 2019; 12():1011-1020. PubMed ID: 31118707
    [No Abstract]   [Full Text] [Related]  

  • 19. Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model.
    Mao Q; Zhang K; Yan W; Cheng C
    J Infect Public Health; 2018; 11(5):707-712. PubMed ID: 29730253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of exponential smoothing method and SARIMA model in predicting the number of admissions in a third-class hospital in Zhejiang Province.
    Yang W; Su A; Ding L
    BMC Public Health; 2023 Nov; 23(1):2309. PubMed ID: 37993836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.