These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36165294)

  • 21. Theoretical study on conformational energies of transition metal complexes.
    Bursch M; Hansen A; Pracht P; Kohn JT; Grimme S
    Phys Chem Chem Phys; 2021 Jan; 23(1):287-299. PubMed ID: 33336657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multidimensional Free Energy and Accelerated Quantum Library Methods Provide a Gateway to Glycoenzyme Conformational, Electronic, and Reaction Mechanisms.
    Naidoo KJ; Bruce-Chwatt T; Senapathi T; Hillebrand M
    Acc Chem Res; 2021 Nov; 54(22):4120-4130. PubMed ID: 34726899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Me-Solvent Interactions on the Structure and Infrared Spectra of MeTFSI (Me = Li, Na) Solutions in Carbonate Solvents-A Test of the GFN2-xTB Approach in Molecular Dynamics Simulations.
    Wróbel P; Eilmes A
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate Quantum Chemical Prediction of Gas-Phase Anion Binding Affinities and Their Structure-Binding Relationships.
    Sandler I; Sharma S; Chan B; Ho J
    J Phys Chem A; 2021 Nov; 125(45):9838-9851. PubMed ID: 34739245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum-level machine learning calculations of Levodopa.
    Shirani H; Hashemianzadeh SM
    Comput Biol Chem; 2024 Oct; 112():108146. PubMed ID: 39067350
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional group corrections to the GFN2-xTB and PM6 semiempirical methods for noncovalent interactions in alkanes and alkenes.
    Cabaleiro-Lago EM; Fernández B; Rodríguez-Fernández R; Rodríguez-Otero J; Vázquez SA
    J Chem Phys; 2023 Mar; 158(12):124105. PubMed ID: 37003773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating hydroxyl/epoxy ratio in graphene oxide through adsorption experiment and semiempirical GFN2-xTB quantum method.
    Souza LCA; Abreu RVA; Guerreiro MC; Oliveira JE; Anconi CPA
    J Mol Model; 2023 Jan; 29(2):42. PubMed ID: 36653546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improvement of DNA and RNA Sugar Pucker Profiles from Semiempirical Quantum Methods.
    Huang M; Giese TJ; Lee TS; York DM
    J Chem Theory Comput; 2014 Apr; 10(4):1538-1545. PubMed ID: 24803866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulating protein-ligand binding with neural network potentials.
    Lahey SJ; Rowley CN
    Chem Sci; 2020 Jan; 11(9):2362-2368. PubMed ID: 34084397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural interpretation of J coupling constants in guanosine and deoxyguanosine: modeling the effects of sugar pucker, backbone conformation, and base pairing.
    Vokácová Z; Bickelhaupt FM; Sponer J; Sychrovský V
    J Phys Chem A; 2009 Jul; 113(29):8379-86. PubMed ID: 19569693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions.
    Bannwarth C; Ehlert S; Grimme S
    J Chem Theory Comput; 2019 Mar; 15(3):1652-1671. PubMed ID: 30741547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Semiautomated Transition State Localization for Organometallic Complexes with Semiempirical Quantum Chemical Methods.
    Dohm S; Bursch M; Hansen A; Grimme S
    J Chem Theory Comput; 2020 Mar; 16(3):2002-2012. PubMed ID: 32074450
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Δ
    Zhao Q; Anstine DM; Isayev O; Savoie BM
    Chem Sci; 2023 Nov; 14(46):13392-13401. PubMed ID: 38033903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extending the Applicability of the ANI Deep Learning Molecular Potential to Sulfur and Halogens.
    Devereux C; Smith JS; Huddleston KK; Barros K; Zubatyuk R; Isayev O; Roitberg AE
    J Chem Theory Comput; 2020 Jul; 16(7):4192-4202. PubMed ID: 32543858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning.
    Liu Z; Lin L; Jia Q; Cheng Z; Jiang Y; Guo Y; Ma J
    J Chem Inf Model; 2021 Mar; 61(3):1066-1082. PubMed ID: 33629839
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systematic Comparison of Experimental Crystallographic Geometries and Gas-Phase Computed Conformers for Torsion Preferences.
    Folmsbee DL; Koes DR; Hutchison GR
    J Chem Inf Model; 2023 Dec; 63(23):7401-7411. PubMed ID: 38000780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transferable Machine Learning Interatomic Potential for Bond Dissociation Energy Prediction of Drug-like Molecules.
    Gelžinytė E; Öeren M; Segall MD; Csányi G
    J Chem Theory Comput; 2024 Jan; 20(1):164-177. PubMed ID: 38108269
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbohydrate-aromatic interactions.
    Asensio JL; Ardá A; Cañada FJ; Jiménez-Barbero J
    Acc Chem Res; 2013 Apr; 46(4):946-54. PubMed ID: 22704792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geometry Optimization Algorithms in Conjunction with the Machine Learning Potential ANI-2x Facilitate the Structure-Based Virtual Screening and Binding Mode Prediction.
    Wang L; He X; Ji B; Han F; Niu T; Cai L; Zhai J; Hao D; Wang J
    Biomolecules; 2024 May; 14(6):. PubMed ID: 38927052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A GROMOS Force Field for Furanose-Based Carbohydrates.
    Nester K; Gaweda K; Plazinski W
    J Chem Theory Comput; 2019 Feb; 15(2):1168-1186. PubMed ID: 30609362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.