These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36166130)

  • 1. Exopolysaccharides from marine microbes with prowess for environment cleanup.
    Baria DM; Patel NY; Yagnik SM; Panchal RR; Rajput KN; Raval VH
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):76611-76625. PubMed ID: 36166130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular polymeric substances of bacteria and their potential environmental applications.
    More TT; Yadav JS; Yan S; Tyagi RD; Surampalli RY
    J Environ Manage; 2014 Nov; 144():1-25. PubMed ID: 24907407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbes in Heavy Metal Remediation: A Review on Current Trends and Patents.
    Mishra GK
    Recent Pat Biotechnol; 2017; 11(3):188-196. PubMed ID: 28116999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential functions and applications of diverse microbial exopolysaccharides in marine environments.
    Ibrahim HAH; Abou Elhassayeb HE; El-Sayed WMM
    J Genet Eng Biotechnol; 2022 Nov; 20(1):151. PubMed ID: 36318392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for microbial bioremediation of environmental pollutants from industrial wastewater: A sustainable approach.
    Saravanan A; Kumar PS; Duc PA; Rangasamy G
    Chemosphere; 2023 Feb; 313():137323. PubMed ID: 36410512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals.
    Zeng W; Li F; Wu C; Yu R; Wu X; Shen L; Liu Y; Qiu G; Li J
    Bioprocess Biosyst Eng; 2020 Jan; 43(1):153-167. PubMed ID: 31549306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of exopolysaccharide in dye-laden wastewater treatment: A comprehensive review.
    Show S; Akhter R; Paul I; Das P; Bal M; Bhattacharya R; Bose D; Mondal A; Saha S; Halder G
    Chemosphere; 2024 May; 355():141753. PubMed ID: 38531498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals.
    Kumari D; Qian XY; Pan X; Achal V; Li Q; Gadd GM
    Adv Appl Microbiol; 2016; 94():79-108. PubMed ID: 26917242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review.
    Liu SH; Zeng GM; Niu QY; Liu Y; Zhou L; Jiang LH; Tan XF; Xu P; Zhang C; Cheng M
    Bioresour Technol; 2017 Jan; 224():25-33. PubMed ID: 27916498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exopolysaccharides and indole-3-acetic acid producing Bacillus safensis strain FN13 potential candidate for phytostabilization of heavy metals.
    Nazli F; Jamil M; Hussain A; Hussain T
    Environ Monit Assess; 2020 Oct; 192(11):738. PubMed ID: 33128189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Exopolysaccharide with Metal Adsorption Capacity Produced by a Marine Bacterium Alteromonas sp. JL2810.
    Zhang Z; Cai R; Zhang W; Fu Y; Jiao N
    Mar Drugs; 2017 Jun; 15(6):. PubMed ID: 28604644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rediscovering bacterial exopolysaccharides of terrestrial and marine origins: novel insights on their distribution, biosynthesis, biotechnological production, and future perspectives.
    Zayed A; Mansour MK; Sedeek MS; Habib MH; Ulber R; Farag MA
    Crit Rev Biotechnol; 2022 Jun; 42(4):597-617. PubMed ID: 34320886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel strategies and advancement in reducing heavy metals from the contaminated environment.
    Maqsood Q; Hussain N; Mumtaz M; Bilal M; Iqbal HMN
    Arch Microbiol; 2022 Jul; 204(8):478. PubMed ID: 35831495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of extracellular polymers on soil communities exposed to oil and nickel contamination.
    Taketani NF; Taketani RG; Leite SGF; Melo IS; de Lima-Rizzo AC; Andreote FD; da Cunha CD
    Braz J Microbiol; 2021 Jun; 52(2):651-661. PubMed ID: 33443727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioremoval of heavy metals by bacterial biomass.
    Aryal M; Liakopoulou-Kyriakides M
    Environ Monit Assess; 2015 Jan; 187(1):4173. PubMed ID: 25471624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial glycoconjugates in organic pollutant bioremediation: recent advances and applications.
    Bhatt P; Verma A; Gangola S; Bhandari G; Chen S
    Microb Cell Fact; 2021 Mar; 20(1):72. PubMed ID: 33736647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil.
    Sayyed RZ; Patel PR; Shaikh SS
    Indian J Exp Biol; 2015 Feb; 53(2):116-23. PubMed ID: 25757243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review with recent advancements on bioremediation-based abolition of heavy metals.
    Gaur N; Flora G; Yadav M; Tiwari A
    Environ Sci Process Impacts; 2014 Feb; 16(2):180-93. PubMed ID: 24362580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exopolysaccharides-Producing Biofilm Bacteria from Submerged Seawater Substrate for Bioremediation of Heavy Metal Contamination.
    Astuti Febria F; Aziza R
    Pak J Biol Sci; 2022 Jan; 25(1):9-14. PubMed ID: 35001570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.