These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36166450)

  • 1. Chemoselective Labeling and Immobilization of Phosphopeptides with Phosphorimidazolide Reagents.
    Brown NW; Schlomach SK; Marmelstein AM; Fiedler D
    Chembiochem; 2023 Feb; 24(4):e202200407. PubMed ID: 36166450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CoFe2 O4 -ZnO nanoparticles for rapid microwave-assisted tryptic digestion of phosphoprotein and phosphopeptide analysis by matrix-assisted laser desorption/ionization mass spectrometry.
    Nawaz MI; Hasan N; Wu HF
    Rapid Commun Mass Spectrom; 2016 Jul; 30(13):1443-53. PubMed ID: 27321831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective Enrichment of Cysteine-Containing Phosphopeptides for Subphosphoproteome Analysis.
    Dong M; Bian Y; Dong J; Wang K; Liu Z; Qin H; Ye M; Zou H
    J Proteome Res; 2015 Dec; 14(12):5341-7. PubMed ID: 26552605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized soluble nanopolymers for phosphoproteome analysis.
    Iliuk A; Jayasundera K; Schluttenhofer R; Tao WA
    Methods Mol Biol; 2011; 790():277-85. PubMed ID: 21948422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of mixed lanthanides-immobilized magnetic nanoparticles for selective enrichment and identification of phosphopeptides by MS.
    Zhai R; Jiao F; Feng D; Hao F; Li J; Li N; Yan H; Wang H; Jin Z; Zhang Y; Qian X
    Electrophoresis; 2014 Dec; 35(24):3470-8. PubMed ID: 24846711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of protein phosphorylation by mass spectrometry.
    Garcia BA; Shabanowitz J; Hunt DF
    Methods; 2005 Mar; 35(3):256-64. PubMed ID: 15722222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics.
    Chen Y; Hoehenwarter W
    Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells.
    Henry M; Coleman O; Prashant ; Clynes M; Meleady P
    Methods Mol Biol; 2017; 1603():195-208. PubMed ID: 28493132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new maleimide-bound acid-cleavable solid-support reagent for profiling phosphorylation.
    Chowdhury SM; Munske GR; Siems WF; Bruce JE
    Rapid Commun Mass Spectrom; 2005; 19(7):899-909. PubMed ID: 15739244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Affinity chromatography based phosphoproteome research on lung cancer cells and its application].
    Zhang B; Wang C; Guo M; Xiao H
    Se Pu; 2021 Jan; 39(1):77-86. PubMed ID: 34227361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confident and sensitive phosphoproteomics using combinations of collision induced dissociation and electron transfer dissociation.
    Collins MO; Wright JC; Jones M; Rayner JC; Choudhary JS
    J Proteomics; 2014 May; 103(100):1-14. PubMed ID: 24657495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a tandem affinity phosphoproteomic method with motif selectivity and its application in analysis of signal transduction networks.
    Herring LE; Grant KG; Blackburn K; Haugh JM; Goshe MB
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Apr; 988():166-74. PubMed ID: 25777480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphopeptide modification and enrichment by oxidation-reduction condensation.
    Warthaka M; Karwowska-Desaulniers P; Pflum MK
    ACS Chem Biol; 2006 Dec; 1(11):697-701. PubMed ID: 17184134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphopeptide enrichment using offline titanium dioxide columns for phosphoproteomics.
    Yu LR; Veenstra T
    Methods Mol Biol; 2013; 1002():93-103. PubMed ID: 23625397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass spectrometry-based characterization of the vitreous phosphoproteome.
    Tamburro D; Facchiano F; Petricoin EF; Liotta LA; Zhou W
    Proteomics Clin Appl; 2010 Nov; 4(10-11):839-46. PubMed ID: 21137027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of a metal oxide affinity chromatography magnetic mesoporous nanomaterial and development of a one-step selective phosphopeptide enrichment strategy for analysis of phosphorylated proteins.
    Gao L; Tao J; Qi L; Jiang X; Shi H; Liu Y; Di B; Wang Y; Yan F
    Anal Chim Acta; 2022 Feb; 1195():339430. PubMed ID: 35090649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential Elution from IMAC (SIMAC): An Efficient Method for Enrichment and Separation of Mono- and Multi-phosphorylated Peptides.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():147-60. PubMed ID: 26584924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of phosphopeptide enrichment techniques for phosphoproteome analysis.
    Han G; Ye M; Zou H
    Analyst; 2008 Sep; 133(9):1128-38. PubMed ID: 18709185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in the analysis of protein phosphorylation.
    Paradela A; Albar JP
    J Proteome Res; 2008 May; 7(5):1809-18. PubMed ID: 18327898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster.
    Pinkse MW; Mohammed S; Gouw JW; van Breukelen B; Vos HR; Heck AJ
    J Proteome Res; 2008 Feb; 7(2):687-97. PubMed ID: 18034456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.