BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36166455)

  • 21. Analysis of cell movement between skin and other anatomical sites in vivo using photoconvertible fluorescent protein "Kaede"-transgenic mice.
    Tomura M; Kabashima K
    Methods Mol Biol; 2013; 961():279-86. PubMed ID: 23325651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein.
    Mizuno H; Mal TK; Tong KI; Ando R; Furuta T; Ikura M; Miyawaki A
    Mol Cell; 2003 Oct; 12(4):1051-8. PubMed ID: 14580354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spawning Induction and Embryo Micromanipulation Protocols in the Amphioxus Branchiostoma lanceolatum.
    Le Petillon Y; Bertrand S; Escrivà H
    Methods Mol Biol; 2020; 2047():347-359. PubMed ID: 31552664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the photoconversion on reaction of the fluorescent protein Kaede on the single-molecule level.
    Dittrich PS; Schäfer SP; Schwille P
    Biophys J; 2005 Nov; 89(5):3446-55. PubMed ID: 16055537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A pulse-chase strategy combining click-EdU and photoconvertible fluorescent reporter: tracking Golgi protein dynamics during the cell cycle.
    Bourge M; Fort C; Soler MN; Satiat-Jeunemaître B; Brown SC
    New Phytol; 2015 Jan; 205(2):938-50. PubMed ID: 25266734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural basis of enhanced photoconversion yield in green fluorescent protein-like protein Dendra2.
    Adam V; Nienhaus K; Bourgeois D; Nienhaus GU
    Biochemistry; 2009 Jun; 48(22):4905-15. PubMed ID: 19371086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoconversion for tracking the dynamics of cell movement in Xenopus laevis embryos.
    Chernet BT; Adams DS; Levin M
    Cold Spring Harb Protoc; 2012 Jun; 2012(6):683-90. PubMed ID: 22661444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contributions of host and symbiont pigments to the coloration of reef corals.
    Oswald F; Schmitt F; Leutenegger A; Ivanchenko S; D'Angelo C; Salih A; Maslakova S; Bulina M; Schirmbeck R; Nienhaus GU; Matz MV; Wiedenmann J
    FEBS J; 2007 Feb; 274(4):1102-9. PubMed ID: 17244197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins.
    Verkhusha VV; Lukyanov KA
    Nat Biotechnol; 2004 Mar; 22(3):289-96. PubMed ID: 14990950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoconversion of the chromophore of a fluorescent protein from Dendronephthya sp.
    Pakhomov AA; Martynova NY; Gurskaya NG; Balashova TA; Martynov VI
    Biochemistry (Mosc); 2004 Aug; 69(8):901-8. PubMed ID: 15377271
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Keeping amphioxus in the laboratory: an update on available husbandry methods.
    Carvalho JE; Lahaye F; Schubert M
    Int J Dev Biol; 2017; 61(10-11-12):773-783. PubMed ID: 29319123
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Testicular somatic cells in the stony coral Euphyllia ancora express an endogenous green fluorescent protein.
    Chiu YL; Shikina S; Chang CF
    Mol Reprod Dev; 2019 Jul; 86(7):798-811. PubMed ID: 31056825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single molecule fluorescence imaging of the photoinduced conversion and bleaching behavior of the fluorescent protein Kaede.
    Schäfer SP; Dittrich PS; Petrov EP; Schwille P
    Microsc Res Tech; 2006 Mar; 69(3):210-9. PubMed ID: 16538628
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Labeling cellular structures in vivo using confined primed conversion of photoconvertible fluorescent proteins.
    Mohr MA; Argast P; Pantazis P
    Nat Protoc; 2016 Dec; 11(12):2419-2431. PubMed ID: 27809312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retracing evolution of red fluorescence in GFP-like proteins from Faviina corals.
    Field SF; Matz MV
    Mol Biol Evol; 2010 Feb; 27(2):225-33. PubMed ID: 19793832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A green to red photoconvertible protein as an analyzing tool for early vertebrate development.
    Wacker SA; Oswald F; Wiedenmann J; Knöchel W
    Dev Dyn; 2007 Feb; 236(2):473-80. PubMed ID: 16964606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of the red fluorescent protein from a lancelet (Branchiostoma lanceolatum): a novel GYG chromophore covalently bound to a nearby tyrosine.
    Pletnev VZ; Pletneva NV; Lukyanov KA; Souslova EA; Fradkov AF; Chudakov DM; Chepurnykh T; Yampolsky IV; Wlodawer A; Dauter Z; Pletnev S
    Acta Crystallogr D Biol Crystallogr; 2013 Sep; 69(Pt 9):1850-60. PubMed ID: 23999308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The E1 mechanism in photo-induced beta-elimination reactions for green-to-red conversion of fluorescent proteins.
    Tsutsui H; Shimizu H; Mizuno H; Nukina N; Furuta T; Miyawaki A
    Chem Biol; 2009 Nov; 16(11):1140-7. PubMed ID: 19942137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of Kaede and Kikume green-red fusions for live cell imaging of G protein-coupled receptors.
    Schmidt A; Wiesner B; Schülein R; Teichmann A
    Methods Mol Biol; 2014; 1174():139-56. PubMed ID: 24947379
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Competitive mechanistic pathways for green-to-red photoconversion in the fluorescent protein Kaede: a computational study.
    Li X; Chung LW; Mizuno H; Miyawaki A; Morokuma K
    J Phys Chem B; 2010 Dec; 114(49):16666-75. PubMed ID: 21082854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.