These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 36166546)

  • 1. Taurus: Towards a Unified Force Representation and Universal Solver for Graph Layout.
    Xue M; Wang Z; Zhong F; Wang Y; Xu M; Deussen O; Wang Y
    IEEE Trans Vis Comput Graph; 2023 Jan; 29(1):886-895. PubMed ID: 36166546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pangenome graph layout by Path-Guided Stochastic Gradient Descent.
    Heumos S; Guarracino A; Schmelzle JM; Li J; Zhang Z; Hagmann J; Nahnsen S; Prins P; Garrison E
    bioRxiv; 2023 Oct; ():. PubMed ID: 37790531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pangenome graph layout by Path-Guided Stochastic Gradient Descent.
    Heumos S; Guarracino A; Schmelzle JM; Li J; Zhang Z; Hagmann J; Nahnsen S; Prins P; Garrison E
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38960860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drawing Large Graphs by Multilevel Maxent-Stress Optimization.
    Meyerhenke H; Nollenburg M; Schulz C
    IEEE Trans Vis Comput Graph; 2018 May; 24(5):1814-1827. PubMed ID: 28368821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisiting Stress Majorization as a Unified Framework for Interactive Constrained Graph Visualization.
    Wang Y; Wang Y; Sun Y; Zhu L; Lu K; Fu CW; Sedlmair M; Deussen O; Chen B
    IEEE Trans Vis Comput Graph; 2018 Jan; 24(1):489-499. PubMed ID: 28866589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the Readability of Force Directed Graph Layouts: A Deep Learning Approach.
    Haleem H; Wang Y; Puri A; Wadhwa S; Qu H
    IEEE Comput Graph Appl; 2019; 39(4):40-53. PubMed ID: 31226059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A maxent-stress model for graph layout.
    Gansner ER; Hu Y; North S
    IEEE Trans Vis Comput Graph; 2013 Jun; 19(6):927-40. PubMed ID: 23559507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DRGraph: An Efficient Graph Layout Algorithm for Large-scale Graphs by Dimensionality Reduction.
    Zhu M; Chen W; Hu Y; Hou Y; Liu L; Zhang K
    IEEE Trans Vis Comput Graph; 2021 Feb; 27(2):1666-1676. PubMed ID: 33275582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multicriteria Scalable Graph Drawing via Stochastic Gradient Descent, (SGD)
    Ahmed R; De Luca F; Devkota S; Kobourov S; Li M
    IEEE Trans Vis Comput Graph; 2022 Jun; 28(6):2388-2399. PubMed ID: 35230951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graph drawing using tabu search coupled with path relinking.
    Dib FK; Rodgers P
    PLoS One; 2018; 13(5):e0197103. PubMed ID: 29746576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graph Drawing by Stochastic Gradient Descent.
    Zheng JX; Pawar S; Goodman DFM
    IEEE Trans Vis Comput Graph; 2019 Sep; 25(9):2738-2748. PubMed ID: 30047888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating Representation Learning and Graph Layout Methods for Visualization.
    Heiter E; Kang B; De Bie T; Lijffijt J; Potel M
    IEEE Comput Graph Appl; 2022; 42(3):19-28. PubMed ID: 35671278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IPSEP-COLA: an incremental procedure for separation constraint layout of graphs.
    Dwyer T; Koren Y; Marriott K
    IEEE Trans Vis Comput Graph; 2006; 12(5):821-8. PubMed ID: 17080805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistent Homology Guided Force-Directed Graph Layouts.
    Suh A; Hajij M; Wang B; Scheidegger C; Rosen P
    IEEE Trans Vis Comput Graph; 2020 Jan; 26(1):697-707. PubMed ID: 31443023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable and Effective Temporal Graph Representation Learning With Hyperbolic Geometry.
    Xu Y; Zhang W; Xu X; Li B; Zhang Y
    IEEE Trans Neural Netw Learn Syst; 2024 May; PP():. PubMed ID: 38728127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multilevel layout algorithm for visualizing physical and genetic interaction networks, with emphasis on their modular organization.
    Tuikkala J; Vähämaa H; Salmela P; Nevalainen OS; Aittokallio T
    BioData Min; 2012 Mar; 5():2. PubMed ID: 22448851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepGD: A Deep Learning Framework for Graph Drawing Using GNN.
    Wang X; Yen K; Hu Y; Shen HW
    IEEE Comput Graph Appl; 2021; 41(5):32-44. PubMed ID: 34232870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual exploration of complex time-varying graphs.
    Kumar G; Garland M
    IEEE Trans Vis Comput Graph; 2006; 12(5):805-12. PubMed ID: 17080803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UniSKGRep: A unified representation learning framework of social network and knowledge graph.
    Shen Y; Jiang X; Li Z; Wang Y; Xu C; Shen H; Cheng X
    Neural Netw; 2023 Jan; 158():142-153. PubMed ID: 36450187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. fCoSE: A Fast Compound Graph Layout Algorithm with Constraint Support.
    Balci H; Dogrusoz U
    IEEE Trans Vis Comput Graph; 2022 Dec; 28(12):4582-4593. PubMed ID: 34232882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.