These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 36166666)
1. Polarization of Tumor-Associated Macrophages Promoted by Vitamin C-Loaded Liposomes for Cancer Immunotherapy. Ma Z; Yang M; Foda MF; Zhang K; Li S; Liang H; Zhao Y; Han H ACS Nano; 2022 Oct; 16(10):17389-17401. PubMed ID: 36166666 [TBL] [Abstract][Full Text] [Related]
2. Construction of Hierarchically Biomimetic Iron Oxide Nanosystems for Macrophage Repolarization-Promoted Immune Checkpoint Blockade of Cancer Immunotherapy. Kang Y; Yan J; Han X; Wang X; Wang Y; Song P; Su X; Rauf A; Jin X; Pu F; Zhang H ACS Appl Mater Interfaces; 2024 Jul; 16(28):36131-36141. PubMed ID: 38979627 [TBL] [Abstract][Full Text] [Related]
3. Correlation between PD-1/PD-L1 expression and polarization in tumor-associated macrophages: A key player in tumor immunotherapy. Li W; Wu F; Zhao S; Shi P; Wang S; Cui D Cytokine Growth Factor Rev; 2022 Oct; 67():49-57. PubMed ID: 35871139 [TBL] [Abstract][Full Text] [Related]
4. Functional Gadofullerene Nanoparticles Trigger Robust Cancer Immunotherapy Based on Rebuilding an Immunosuppressive Tumor Microenvironment. Li L; Zhen M; Wang H; Sun Z; Jia W; Zhao Z; Zhou C; Liu S; Wang C; Bai C Nano Lett; 2020 Jun; 20(6):4487-4496. PubMed ID: 32407113 [TBL] [Abstract][Full Text] [Related]
5. M1 Macrophage-Derived Nanovesicles Potentiate the Anticancer Efficacy of Immune Checkpoint Inhibitors. Choo YW; Kang M; Kim HY; Han J; Kang S; Lee JR; Jeong GJ; Kwon SP; Song SY; Go S; Jung M; Hong J; Kim BS ACS Nano; 2018 Sep; 12(9):8977-8993. PubMed ID: 30133260 [TBL] [Abstract][Full Text] [Related]
6. Multifunctional nanodrug performs sonodynamic therapy and inhibits TGF-β to boost immune response against colorectal cancer and liver metastasis. Huang S; Ding D; Lan T; He G; Ren J; Liang R; Zhong H; Chen G; Lu X; Shuai X; Wei B Acta Biomater; 2023 Jul; 164():538-552. PubMed ID: 37037269 [TBL] [Abstract][Full Text] [Related]
7. CSF1R inhibition reprograms tumor-associated macrophages to potentiate anti-PD-1 therapy efficacy against colorectal cancer. Lv Q; Zhang Y; Gao W; Wang J; Hu Y; Yang H; Xie Y; Lv Y; Zhang H; Wu D; Hu L; Wang J Pharmacol Res; 2024 Apr; 202():107126. PubMed ID: 38432446 [TBL] [Abstract][Full Text] [Related]
8. M2-Like TAMs Function Reversal Contributes to Breast Cancer Eradication by Combination Dual Immune Checkpoint Blockade and Photothermal Therapy. Zhao W; Hu X; Li W; Li R; Chen J; Zhou L; Qiang S; Wu W; Shi S; Dong C Small; 2021 Apr; 17(13):e2007051. PubMed ID: 33599061 [TBL] [Abstract][Full Text] [Related]
9. Tumor-Associated Macrophages Regulate PD-1/PD-L1 Immunosuppression. Pu Y; Ji Q Front Immunol; 2022; 13():874589. PubMed ID: 35592338 [TBL] [Abstract][Full Text] [Related]
11. Boosting anti-PD-1 therapy with metformin-loaded macrophage-derived microparticles. Wei Z; Zhang X; Yong T; Bie N; Zhan G; Li X; Liang Q; Li J; Yu J; Huang G; Yan Y; Zhang Z; Zhang B; Gan L; Huang B; Yang X Nat Commun; 2021 Jan; 12(1):440. PubMed ID: 33469052 [TBL] [Abstract][Full Text] [Related]
12. Programmed Cell Death Ligand-1 (PDL-1) Correlates With Tumor Infiltration by Immune Cells and Represents a Promising Target for Immunotherapy in Endometrial Cancer. Hecking T; Thiesler T; Halbe J; Otten L; Recker F; Gevensleben H; Müller T; Schiller C; Egger EK; Fimmers R; Stope MB; Kristiansen G; Mustea A Anticancer Res; 2022 Mar; 42(3):1367-1376. PubMed ID: 35220229 [TBL] [Abstract][Full Text] [Related]
13. Anti-PD-1 Induces M1 Polarization in the Glioma Microenvironment and Exerts Therapeutic Efficacy in the Absence of CD8 Cytotoxic T Cells. Rao G; Latha K; Ott M; Sabbagh A; Marisetty A; Ling X; Zamler D; Doucette TA; Yang Y; Kong LY; Wei J; Fuller GN; Benavides F; Sonabend AM; Long J; Li S; Curran M; Heimberger AB Clin Cancer Res; 2020 Sep; 26(17):4699-4712. PubMed ID: 32554515 [TBL] [Abstract][Full Text] [Related]
14. Macrophage-derived biomimetic nanoparticles enhanced SDT combined with immunotherapy inhibited tumor growth and metastasis. Chen S; Ma T; Wang J; Liang S; Liao H; Tan W; Chen M; Zhou X; Xu Y; Wang L; Niu C Biomaterials; 2024 Mar; 305():122456. PubMed ID: 38184961 [TBL] [Abstract][Full Text] [Related]
15. What Happens to the Immune Microenvironment After PD-1 Inhibitor Therapy? Wang Q; Xie B; Liu S; Shi Y; Tao Y; Xiao D; Wang W Front Immunol; 2021; 12():773168. PubMed ID: 35003090 [TBL] [Abstract][Full Text] [Related]
16. Fibroblast Activation Protein-α Responsive Peptide Assembling Prodrug Nanoparticles for Remodeling the Immunosuppressive Microenvironment and Boosting Cancer Immunotherapy. Sun M; Yao S; Fan L; Fang Z; Miao W; Hu Z; Wang Z Small; 2022 Mar; 18(9):e2106296. PubMed ID: 34914185 [TBL] [Abstract][Full Text] [Related]
17. TLR5 agonist in combination with anti-PD-1 treatment enhances anti-tumor effect through M1/M2 macrophage polarization shift and CD8 Lee J; Im KI; Gil S; Na H; Min GJ; Kim N; Cho SG Cancer Immunol Immunother; 2024 Apr; 73(6):102. PubMed ID: 38630304 [TBL] [Abstract][Full Text] [Related]
18. Regulating the immunosuppressive tumor microenvironment to enhance breast cancer immunotherapy using pH-responsive hybrid membrane-coated nanoparticles. Gong C; Yu X; Zhang W; Han L; Wang R; Wang Y; Gao S; Yuan Y J Nanobiotechnology; 2021 Feb; 19(1):58. PubMed ID: 33632231 [TBL] [Abstract][Full Text] [Related]
19. The potential role of vitamin C in empowering cancer immunotherapy. Bedhiafi T; Inchakalody VP; Fernandes Q; Mestiri S; Billa N; Uddin S; Merhi M; Dermime S Biomed Pharmacother; 2022 Feb; 146():112553. PubMed ID: 34923342 [TBL] [Abstract][Full Text] [Related]
20. Drug-loaded microbubble delivery system to enhance PD-L1 blockade immunotherapy with remodeling immune microenvironment. Zheng J; Huang J; Zhang L; Wang M; Xu L; Dou X; Leng X; Fang M; Sun Y; Wang Z Biomater Res; 2023 Feb; 27(1):9. PubMed ID: 36759928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]