BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36166891)

  • 1. Clostridium perfringens associated with dairy farm systems show diverse genotypes.
    Santos RAND; Abdel-Nour J; McAuley C; Moore SC; Fegan N; Fox EM
    Int J Food Microbiol; 2022 Dec; 382():109933. PubMed ID: 36166891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevalence, Genotypic and Phenotypic Characterization and Antibiotic Resistance Profile of
    Mohiuddin M; Iqbal Z; Siddique A; Liao S; Salamat MKF; Qi N; Din AM; Sun M
    Toxins (Basel); 2020 Oct; 12(10):. PubMed ID: 33066416
    [No Abstract]   [Full Text] [Related]  

  • 3. The prevalence of plasmid-coded cpe enterotoxin, β
    Park M; Rafii F
    Anaerobe; 2019 Apr; 56():124-129. PubMed ID: 30802555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic analysis of Clostridium perfringens type D isolates from goat farms.
    Feng H; Wu K; Yuan Y; Fang M; Wang J; Li R; Zhang R; Wang X; Ye D; Yang Z
    Vet Microbiol; 2024 Jul; 294():110105. PubMed ID: 38729094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virulence plasmid diversity in Clostridium perfringens type D isolates.
    Sayeed S; Li J; McClane BA
    Infect Immun; 2007 May; 75(5):2391-8. PubMed ID: 17339362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the spore-forming Bacillus cereus sensu lato group and Clostridium perfringens bacteria isolated from the Australian dairy farm environment.
    Dréan P; McAuley CM; Moore SC; Fegan N; Fox EM
    BMC Microbiol; 2015 Feb; 15():38. PubMed ID: 25881096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of Clostridium perfringens toxin-genotypes from dairy farms.
    Fohler S; Klein G; Hoedemaker M; Scheu T; Seyboldt C; Campe A; Jensen KC; Abdulmawjood A
    BMC Microbiol; 2016 Aug; 16(1):199. PubMed ID: 27577792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clostridium perfringens toxin-types in lambs and kids affected with gastroenteric pathologies in Italy.
    Greco G; Madio A; Buonavoglia D; Totaro M; Corrente M; Martella V; Buonavoglia C
    Vet J; 2005 Nov; 170(3):346-50. PubMed ID: 16266848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevalence of cpb2, encoding beta2 toxin, in Clostridium perfringens field isolates: correlation of genotype with phenotype.
    Bueschel DM; Jost BH; Billington SJ; Trinh HT; Songer JG
    Vet Microbiol; 2003 Jul; 94(2):121-9. PubMed ID: 12781480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic diversity of Clostridium perfringens type A isolates from animals, food poisoning outbreaks and sludge.
    Johansson A; Aspan A; Bagge E; Båverud V; Engström BE; Johansson KE
    BMC Microbiol; 2006 May; 6():47. PubMed ID: 16737528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Characterization of
    Forti K; Ferroni L; Pellegrini M; Cruciani D; De Giuseppe A; Crotti S; Papa P; Maresca C; Severi G; Marenzoni ML; Cagiola M
    Toxins (Basel); 2020 Oct; 12(10):. PubMed ID: 33050097
    [No Abstract]   [Full Text] [Related]  

  • 12. Necrotic enteritis-derived Clostridium perfringens strain with three closely related independently conjugative toxin and antibiotic resistance plasmids.
    Bannam TL; Yan XX; Harrison PF; Seemann T; Keyburn AL; Stubenrauch C; Weeramantri LH; Cheung JK; McClane BA; Boyce JD; Moore RJ; Rood JI
    mBio; 2011; 2(5):. PubMed ID: 21954306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of beta2 toxin production with Clostridium perfringens type A human gastrointestinal disease isolates carrying a plasmid enterotoxin gene.
    Fisher DJ; Miyamoto K; Harrison B; Akimoto S; Sarker MR; McClane BA
    Mol Microbiol; 2005 May; 56(3):747-62. PubMed ID: 15819629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevalence, toxin-genotype distribution, and transmission of Clostridium perfringens from the breeding and milking process of dairy farms.
    Jiang Y; Pan Y; Yin J
    Food Microbiol; 2024 Jun; 120():104485. PubMed ID: 38431330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the prevalence of antimicrobial resistance genes in canine Clostridium perfringens isolates.
    Kather EJ; Marks SL; Foley JE
    Vet Microbiol; 2006 Mar; 113(1-2):97-101. PubMed ID: 16330169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevalence, toxin-typing and antimicrobial susceptibility of Clostridium perfringens in sheep with different feeding modes from Gansu and Qinghai provinces, China.
    Wu K; Feng H; Ma J; Wang B; Feng J; Zhang H; Jiang Y; Li R; Wang J; Yang Z
    Anaerobe; 2022 Feb; 73():102516. PubMed ID: 35026419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Staphylococcus aureus isolates from raw milk sources in Victoria, Australia.
    McMillan K; Moore SC; McAuley CM; Fegan N; Fox EM
    BMC Microbiol; 2016 Jul; 16(1):169. PubMed ID: 27473328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ulcerative enterocolitis in two goats associated with enterotoxin- and beta2 toxin-positive Clostridium perfringens type D.
    Uzal FA; Fisher DJ; Saputo J; Sayeed S; McClane BA; Songer G; Trinh HT; Fernandez Miyakawa ME; Gard S
    J Vet Diagn Invest; 2008 Sep; 20(5):668-72. PubMed ID: 18776108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low Prevalence of netB and tpeL in Historical Clostridium perfringens Isolates from Broiler Farms in Alabama.
    Bailey MA; Macklin KS; Krehling JT
    Avian Dis; 2015 Mar; 59(1):46-51. PubMed ID: 26292533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxinotyping and molecular characterization of antimicrobial resistance in Clostridium perfringens isolated from different sources of livestock and poultry.
    Anju K; Karthik K; Divya V; Mala Priyadharshini ML; Sharma RK; Manoharan S
    Anaerobe; 2021 Feb; 67():102298. PubMed ID: 33220406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.