These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 36166928)
1. Cost-effective and sensitive indicator-displacement array (IDA) assay for quality monitoring of black tea fermentation. Jia H; Yuan W; Ren Z; Ning J; Xu YQ; Wang Y; Deng WW Food Chem; 2023 Mar; 403():134340. PubMed ID: 36166928 [TBL] [Abstract][Full Text] [Related]
2. Identification of Chinese teas by a colorimetric sensor array based on tea polyphenol induced indicator displacement assay. Jia M; Pan Y; Zhou J; Zhang M Food Chem; 2021 Jan; 335():127566. PubMed ID: 32745839 [TBL] [Abstract][Full Text] [Related]
3. Rapid monitoring of black tea fermentation quality based on a solution-phase sensor array combined with UV-visible spectroscopy. Li L; Li M; Cui Q; Liu Y; Chen Y; Wang Y; Zhang Z; Chen Q; Ning J Food Chem; 2022 May; 377():131974. PubMed ID: 34979395 [TBL] [Abstract][Full Text] [Related]
4. Indicator displacement assay for freshness monitoring of green tea during storage. Zhang Y; Yuan W; Ren Z; Ning J; Wang Y Food Res Int; 2023 May; 167():112668. PubMed ID: 37087209 [TBL] [Abstract][Full Text] [Related]
5. Rapid and real-time detection of black tea fermentation quality by using an inexpensive data fusion system. Jin G; Wang YJ; Li M; Li T; Huang WJ; Li L; Deng WW; Ning J Food Chem; 2021 Oct; 358():129815. PubMed ID: 33915424 [TBL] [Abstract][Full Text] [Related]
6. HPLC analysis of naturally occurring methylated catechins, 3' '- and 4' '-methyl-epigallocatechin gallate, in various fresh tea leaves and commercial teas and their potent inhibitory effects on inducible nitric oxide synthase in macrophages. Chiu FL; Lin JK J Agric Food Chem; 2005 Sep; 53(18):7035-42. PubMed ID: 16131108 [TBL] [Abstract][Full Text] [Related]
7. Study into the chemical changes of tea leaf polyphenols during japanese black tea processing. Ito A; Yanase E Food Res Int; 2022 Oct; 160():111731. PubMed ID: 36076419 [TBL] [Abstract][Full Text] [Related]
8. Visualizing chemical indicators: Spatial and temporal quality formation and distribution during black tea fermentation. Wang Y; Ren Z; Chen Y; Lu C; Deng WW; Zhang Z; Ning J Food Chem; 2023 Feb; 401():134090. PubMed ID: 36115236 [TBL] [Abstract][Full Text] [Related]
9. Analytical strategy coupled to chemometrics to differentiate Camellia sinensis tea types based on phenolic composition, alkaloids, and amino acids. Jiang H; Zhang M; Wang D; Yu F; Zhang N; Song C; Granato D J Food Sci; 2020 Oct; 85(10):3253-3263. PubMed ID: 32856300 [TBL] [Abstract][Full Text] [Related]
10. PCL assay application in superoxide anion-radical scavenging capacity of tea Camellia sinensis extracts. Gramza-Michałowska A; Sidor A; Reguła J; Kulczyński B Acta Sci Pol Technol Aliment; 2015; 14(4):331-341. PubMed ID: 28068039 [TBL] [Abstract][Full Text] [Related]
11. Cost-effective colorimetric sensor for authentication of protected designation of origin (PDO) Longjing green tea. Ren Z; Hou Z; Deng G; Huang L; Liu N; Ning J; Wang Y Food Chem; 2023 Nov; 427():136673. PubMed ID: 37364316 [TBL] [Abstract][Full Text] [Related]
12. pH indicator-based sensor array in combination with hyperspectral imaging for intelligent evaluation of withering degree during processing of black tea. Wang Y; Ren Z; Li M; Yuan W; Zhang Z; Ning J Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120959. PubMed ID: 35121474 [TBL] [Abstract][Full Text] [Related]
13. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition. Fan DM; Fan K; Yu CP; Lu YT; Wang XC J Zhejiang Univ Sci B; 2017 Feb.; 18(2):99-108. PubMed ID: 28124839 [TBL] [Abstract][Full Text] [Related]
14. Changes of major tea polyphenols and production of four new B-ring fission metabolites of catechins from post-fermented Jing-Wei Fu brick tea. Zhu YF; Chen JJ; Ji XM; Hu X; Ling TJ; Zhang ZZ; Bao GH; Wan XC Food Chem; 2015 Mar; 170():110-7. PubMed ID: 25306324 [TBL] [Abstract][Full Text] [Related]
15. Investigation of processes in black tea manufacture through model fermentation (oxidation) experiments. Stodt UW; Blauth N; Niemann S; Stark J; Pawar V; Jayaraman S; Koek J; Engelhardt UH J Agric Food Chem; 2014 Aug; 62(31):7854-61. PubMed ID: 25051300 [TBL] [Abstract][Full Text] [Related]
16. Discrimination of Chinese teas with different fermentation degrees by stepwise linear discriminant analysis (S-LDA) of the chemical compounds. Wu QJ; Dong QH; Sun WJ; Huang Y; Wang QQ; Zhou WL J Agric Food Chem; 2014 Sep; 62(38):9336-44. PubMed ID: 25211192 [TBL] [Abstract][Full Text] [Related]
17. Antioxidant capacity and major polyphenol composition of teas as affected by geographical location, plantation elevation and leaf grade. Zhang C; Suen CL; Yang C; Quek SY Food Chem; 2018 Apr; 244():109-119. PubMed ID: 29120758 [TBL] [Abstract][Full Text] [Related]
18. Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry. Liao Y; Fu X; Zhou H; Rao W; Zeng L; Yang Z Food Chem; 2019 Sep; 292():204-210. PubMed ID: 31054666 [TBL] [Abstract][Full Text] [Related]
19. A novel hybrid sensor array based on the polyphenol oxidase and its nanozymes combined with the machine learning based dual output model to identify tea polyphenols and Chinese teas. Yang X; Bi Z; Yin C; Huang H; Li Y Talanta; 2024 May; 272():125842. PubMed ID: 38428131 [TBL] [Abstract][Full Text] [Related]
20. A sensor array based on a nanozyme with polyphenol oxidase activity for the identification of tea polyphenols and Chinese green tea. Yang X; Zou B; Zhang X; Yang J; Bi Z; Huang H; Li Y Biosens Bioelectron; 2024 Apr; 250():116056. PubMed ID: 38271889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]