These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 36167103)

  • 1. Strengthened self-healable natural rubber composites based on carboxylated cellulose nanofibers participated in ionic supramolecular network.
    Wu M; Yang L; Zheng Z; Wan F; Teng X; Xu C
    Int J Biol Macromol; 2022 Dec; 222(Pt A):587-598. PubMed ID: 36167103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of Self-Healing Supramolecular Rubbers by Introducing Ionic Cross-Links into Natural Rubber via a Controlled Vulcanization.
    Xu C; Cao L; Lin B; Liang X; Chen Y
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17728-37. PubMed ID: 27337545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Healing Natural Rubber with Tailorable Mechanical Properties Based on Ionic Supramolecular Hybrid Network.
    Xu C; Cao L; Huang X; Chen Y; Lin B; Fu L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29363-29373. PubMed ID: 28782360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of self-healable supramolecular hybrid network based on carboxylated styrene butadiene rubber and nano-chitosan.
    Xu C; Nie J; Wu W; Fu L; Lin B
    Carbohydr Polym; 2019 Feb; 205():410-419. PubMed ID: 30446122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compatibilization of Cellulose Nanocrystal-Reinforced Natural Rubber Nanocomposite by Modified Natural Rubber.
    Jantachum P; Phinyocheep P
    Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic reinforcing and cross-linking effect of thiol-ene-modified cellulose nanofibrils on natural rubber.
    Zhu G; Dufresne A
    Carbohydr Polym; 2022 Feb; 278():118954. PubMed ID: 34973770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the surface chemical groups of cellulose nanocrystals on the vulcanization and mechanical properties of natural rubber/cellulose nanocrystals nanocomposites.
    Hu J; Wu H; Liang S; Tian X; Liu K; Jiang M; Dominic CDM; Zhao H; Duan Y; Zhang J
    Int J Biol Macromol; 2023 Mar; 230():123168. PubMed ID: 36621734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of natural rubber reinforced with cellulose nanofibers based on fiber diameter distribution as estimated by differential centrifugal sedimentation.
    Kumagai A; Tajima N; Iwamoto S; Morimoto T; Nagatani A; Okazaki T; Endo T
    Int J Biol Macromol; 2019 Jan; 121():989-995. PubMed ID: 30342153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bio-based, self-healable, conductive rubber film with oxidized cellulose nanofiber segregated network.
    Guo Y; Lin Z; He M; Wang Y; Xu C
    Int J Biol Macromol; 2024 Nov; 281(Pt 2):136428. PubMed ID: 39389513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple green approach to reinforce natural rubber with bacterial cellulose nanofibers.
    Trovatti E; Carvalho AJ; Ribeiro SJ; Gandini A
    Biomacromolecules; 2013 Aug; 14(8):2667-74. PubMed ID: 23782026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: properties evaluation.
    Bitinis N; Fortunati E; Verdejo R; Bras J; Kenny JM; Torre L; López-Manchado MA
    Carbohydr Polym; 2013 Jul; 96(2):621-7. PubMed ID: 23768608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Fabrication of Eucommia Rubber Composites with High Shape Memory Performance.
    Xia L; Meng J; Ma Y; Zhao P
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spherical CaCO
    Longkaew K; Gibaud A; Tessanan W; Daniel P; Phinyocheep P
    Polymers (Basel); 2023 Oct; 15(21):. PubMed ID: 37959967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioderived Rubber-Cellulose Nanocrystal Composites with Tunable Water-Responsive Adaptive Mechanical Behavior.
    Tian M; Zhen X; Wang Z; Zou H; Zhang L; Ning N
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6482-6487. PubMed ID: 28116897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcement Behavior of Chemically Unmodified Cellulose Nanofiber in Natural Rubber Nanocomposites.
    Wongvasana B; Thongnuanchan B; Masa A; Saito H; Sakai T; Lopattananon N
    Polymers (Basel); 2023 Mar; 15(5):. PubMed ID: 36904515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual X-ray- and Neutron-Shielding Properties of Gd
    Poltabtim W; Thumwong A; Wimolmala E; Rattanapongs C; Tokonami S; Ishikawa T; Saenboonruang K
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications.
    Cao J; Zhang X; Wu X; Wang S; Lu C
    Carbohydr Polym; 2016 Apr; 140():88-95. PubMed ID: 26876831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Property enhancement of epoxidized natural rubber nanocomposites with water hyacinth-extracted cellulose nanofibers.
    Tanpichai S; Thongdeelerd C; Chantaramanee T; Boonmahitthisud A
    Int J Biol Macromol; 2023 Apr; 234():123741. PubMed ID: 36806770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement of rubber nanocomposite thin sheets by percolation of pristine cellulose nanocrystals.
    Jardin JM; Zhang Z; Hu G; Tam KC; Mekonnen TH
    Int J Biol Macromol; 2020 Jun; 152():428-436. PubMed ID: 32112834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabricating an anti-shrinking κ-carrageenan/sodium carboxymethyl starch film by incorporating carboxylated cellulose nanofibrils for fruit preservation.
    Zhang C; Chi W; Meng F; Wang L
    Int J Biol Macromol; 2021 Nov; 191():706-713. PubMed ID: 34582912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.