BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 36167240)

  • 1. Engineered biomaterials to guide spheroid formation, function, and fabrication into 3D tissue constructs.
    Caprio ND; Burdick JA
    Acta Biomater; 2023 Jul; 165():4-18. PubMed ID: 36167240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principles of Spheroid Preparation for Creation of 3D Cardiac Tissue Using Biomaterial-Free Bioprinting.
    Ong CS; Pitaktong I; Hibino N
    Methods Mol Biol; 2020; 2140():183-197. PubMed ID: 32207113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Step Biofabrication of In Situ Spheroid-Forming Compartmentalized Hydrogel for Clinical-Sized Cartilage Tissue Formation.
    van Loo B; Schot M; Gurian M; Kamperman T; Leijten J
    Adv Healthc Mater; 2024 Jan; 13(2):e2300095. PubMed ID: 37793116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased Survival and Function of Mesenchymal Stem Cell Spheroids Entrapped in Instructive Alginate Hydrogels.
    Ho SS; Murphy KC; Binder BY; Vissers CB; Leach JK
    Stem Cells Transl Med; 2016 Jun; 5(6):773-81. PubMed ID: 27057004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for 3D bioprinting of spheroids: A comprehensive review.
    Banerjee D; Singh YP; Datta P; Ozbolat V; O'Donnell A; Yeo M; Ozbolat IT
    Biomaterials; 2022 Dec; 291():121881. PubMed ID: 36335718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
    Heo DN; Hospodiuk M; Ozbolat IT
    Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Multi-Cellular Spheroids for Tissue Engineering and Regenerative Medicine.
    Kim SJ; Kim EM; Yamamoto M; Park H; Shin H
    Adv Healthc Mater; 2020 Dec; 9(23):e2000608. PubMed ID: 32734719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of core-shell spheroids as building blocks for engineering 3D complex vascularized tissue.
    Kim EM; Lee YB; Kim SJ; Park J; Lee J; Kim SW; Park H; Shin H
    Acta Biomater; 2019 Dec; 100():158-172. PubMed ID: 31542503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering principles for guiding spheroid function in the regeneration of bone, cartilage, and skin.
    Gionet-Gonzales MA; Leach JK
    Biomed Mater; 2018 Mar; 13(3):034109. PubMed ID: 29460842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell spheroids as a versatile research platform: formation mechanisms, high throughput production, characterization and applications.
    Decarli MC; Amaral R; Santos DPD; Tofani LB; Katayama E; Rezende RA; Silva JVLD; Swiech K; Suazo CAT; Mota C; Moroni L; Moraes ÂM
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33592595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomaterials-assisted spheroid engineering for regenerative therapy.
    Lee NH; Bayaraa O; Zechu Z; Kim HS
    BMB Rep; 2021 Jul; 54(7):356-367. PubMed ID: 34154700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput Formation of Mesenchymal Stem Cell Spheroids and Entrapment in Alginate Hydrogels.
    Vorwald CE; Ho SS; Whitehead J; Leach JK
    Methods Mol Biol; 2018; 1758():139-149. PubMed ID: 29679328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspiration-assisted freeform bioprinting of mesenchymal stem cell spheroids within alginate microgels.
    Kim MH; Banerjee D; Celik N; Ozbolat IT
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient fabrication of monodisperse hepatocyte spheroids and encapsulation in hybrid hydrogel with controllable extracellular matrix effect.
    Deng S; Zhu Y; Zhao X; Chen J; Tuan RS; Chan HF
    Biofabrication; 2021 Oct; 14(1):. PubMed ID: 34587587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers.
    Daly AC; Kelly DJ
    Biomaterials; 2019 Mar; 197():194-206. PubMed ID: 30660995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaffolded spheroids as building blocks for bottom-up cartilage tissue engineering show enhanced bioassembly dynamics.
    Kopinski-Grünwald O; Guillaume O; Ferner T; Schädl B; Ovsianikov A
    Acta Biomater; 2024 Jan; 174():163-176. PubMed ID: 38065247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Keeping It Organized: Multicompartment Constructs to Mimic Tissue Heterogeneity.
    Sanchez-Rubio A; Jayawarna V; Maxwell E; Dalby MJ; Salmeron-Sanchez M
    Adv Healthc Mater; 2023 Jul; 12(17):e2202110. PubMed ID: 36938891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering.
    Heo DN; Ayan B; Dey M; Banerjee D; Wee H; Lewis GS; Ozbolat IT
    Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33059343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.