These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 36167284)

  • 21. Beyond benchmarking and towards predictive models of dataset-specific single-cell RNA-seq pipeline performance.
    Fang C; Selega A; Campbell KR
    Genome Biol; 2024 Jun; 25(1):159. PubMed ID: 38886757
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extensible benchmarking of methods that identify and quantify polyadenylation sites from RNA-seq data.
    Bryce-Smith S; Burri D; Gazzara MR; Herrmann CJ; Danecka W; Fitzsimmons CM; Wan YK; Zhuang F; Fansler MM; Fernández JM; Ferret M; Gonzalez-Uriarte A; Haynes S; Herdman C; Kanitz A; Katsantoni M; Marini F; McDonnel E; Nicolet B; Poon CL; Rot G; Schärfen L; Wu PJ; Yoon Y; Barash Y; Zavolan M
    RNA; 2023 Dec; 29(12):1839-1855. PubMed ID: 37816550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic expression of 3' UTRs revealed by Poisson hidden Markov modeling of RNA-Seq: implications in gene expression profiling.
    Lu J; Bushel PR
    Gene; 2013 Sep; 527(2):616-23. PubMed ID: 23845781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous studies of gene expression and alternative polyadenylation in primary human immune cells.
    Wilton J; Tellier M; Nojima T; Costa AM; Oliveira MJ; Moreira A
    Methods Enzymol; 2021; 655():349-399. PubMed ID: 34183129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polyadenylation sites and their characteristics in the genome of channel catfish (Ictalurus punctatus) as revealed by using RNA-Seq data.
    Tan S; Wang W; Zhou T; Yang Y; Gao D; Dunham R; Liu Z
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Jun; 30():248-255. PubMed ID: 30952021
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extensive Involvement of Alternative Polyadenylation in Single-Nucleus Neurons.
    Wang Y; Feng W; Xu S; He B
    Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32604877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global estimation of the 3' untranslated region landscape using RNA sequencing.
    Kim M; You BH; Nam JW
    Methods; 2015 Jul; 83():111-7. PubMed ID: 25899044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alternative polyadenylation of single cells delineates cell types and serves as a prognostic marker in early stage breast cancer.
    Kim N; Chung W; Eum HH; Lee HO; Park WY
    PLoS One; 2019; 14(5):e0217196. PubMed ID: 31100099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ReadZS detects cell type-specific and developmentally regulated RNA processing programs in single-cell RNA-seq.
    Meyer E; Chaung K; Dehghannasiri R; Salzman J
    Genome Biol; 2022 Oct; 23(1):226. PubMed ID: 36284317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Poly(A)-ClickSeq: click-chemistry for next-generation 3΄-end sequencing without RNA enrichment or fragmentation.
    Routh A; Ji P; Jaworski E; Xia Z; Li W; Wagner EJ
    Nucleic Acids Res; 2017 Jul; 45(12):e112. PubMed ID: 28449108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MAAPER: model-based analysis of alternative polyadenylation using 3' end-linked reads.
    Li WV; Zheng D; Wang R; Tian B
    Genome Biol; 2021 Aug; 22(1):222. PubMed ID: 34376236
    [TBL] [Abstract][Full Text] [Related]  

  • 32. scAPAatlas: an atlas of alternative polyadenylation across cell types in human and mouse.
    Yang X; Tong Y; Liu G; Yuan J; Yang Y
    Nucleic Acids Res; 2022 Jan; 50(D1):D356-D364. PubMed ID: 34643729
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PAS-seq 2: A fast and sensitive method for global profiling of polyadenylated RNAs.
    Yoon Y; Soles LV; Shi Y
    Methods Enzymol; 2021; 655():25-35. PubMed ID: 34183125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TAPAS: tool for alternative polyadenylation site analysis.
    Arefeen A; Liu J; Xiao X; Jiang T
    Bioinformatics; 2018 Aug; 34(15):2521-2529. PubMed ID: 30052912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. APAtrap: identification and quantification of alternative polyadenylation sites from RNA-seq data.
    Ye C; Long Y; Ji G; Li QQ; Wu X
    Bioinformatics; 2018 Jun; 34(11):1841-1849. PubMed ID: 29360928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. stAPAminer: Mining Spatial Patterns of Alternative Polyadenylation for Spatially Resolved Transcriptomic Studies.
    Ji G; Tang Q; Zhu S; Zhu J; Ye P; Xia S; Wu X
    Genomics Proteomics Bioinformatics; 2023 Jun; 21(3):601-618. PubMed ID: 36669641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Detection and Bioinformatic Analysis of Alternative 3
    Kandhari N; Kraupner-Taylor CA; Harrison PF; Powell DR; Beilharz TH
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34070203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. No detectable alloreactive transcriptional responses under standard sample preparation conditions during donor-multiplexed single-cell RNA sequencing of peripheral blood mononuclear cells.
    McGinnis CS; Siegel DA; Xie G; Hartoularos G; Stone M; Ye CJ; Gartner ZJ; Roan NR; Lee SA
    BMC Biol; 2021 Jan; 19(1):10. PubMed ID: 33472616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Deep Neural Network for Predicting and Engineering Alternative Polyadenylation.
    Bogard N; Linder J; Rosenberg AB; Seelig G
    Cell; 2019 Jun; 178(1):91-106.e23. PubMed ID: 31178116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Implications of polyadenylation in health and disease.
    Curinha A; Oliveira Braz S; Pereira-Castro I; Cruz A; Moreira A
    Nucleus; 2014; 5(6):508-19. PubMed ID: 25484187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.