BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36167441)

  • 1. Recent developments in our understanding of the physiology and nitric oxide-resistance of Staphylococcus aureus.
    Stephens AC; Richardson AR
    Adv Microb Physiol; 2022; 81():111-135. PubMed ID: 36167441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Response of
    Favazzo LJ; Gill AL; Farnsworth CW; Mooney RA; Gill SR
    J Bacteriol; 2019 May; 201(9):. PubMed ID: 30782631
    [No Abstract]   [Full Text] [Related]  

  • 3. The Intersection of the Staphylococcus aureus Rex and SrrAB Regulons: an Example of Metabolic Evolution That Maximizes Resistance to Immune Radicals.
    Dmitriev A; Chen X; Paluscio E; Stephens AC; Banerjee SK; Vitko NP; Richardson AR
    mBio; 2021 Dec; 12(6):e0218821. PubMed ID: 34781744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth and Stress Tolerance Comprise Independent Metabolic Strategies Critical for Staphylococcus aureus Infection.
    Kim GL; Hooven TA; Norambuena J; Li B; Boyd JM; Yang JH; Parker D
    mBio; 2021 Jun; 12(3):e0081421. PubMed ID: 34101490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory Requirements for Staphylococcus aureus Nitric Oxide Resistance.
    Grosser MR; Weiss A; Shaw LN; Richardson AR
    J Bacteriol; 2016 Aug; 198(15):2043-55. PubMed ID: 27185828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycolytic dependency of high-level nitric oxide resistance and virulence in Staphylococcus aureus.
    Vitko NP; Spahich NA; Richardson AR
    mBio; 2015 Apr; 6(2):. PubMed ID: 25852157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms Behind the Indirect Impact of Metabolic Regulators on Virulence Factor Production in Staphylococcus aureus.
    Stephens AC; Thurlow LR; Richardson AR
    Microbiol Spectr; 2022 Aug; 10(4):e0206322. PubMed ID: 35862951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity.
    Richardson AR; Dunman PM; Fang FC
    Mol Microbiol; 2006 Aug; 61(4):927-39. PubMed ID: 16859493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic control of virulence factor production in Staphylococcus aureus.
    Rudra P; Boyd JM
    Curr Opin Microbiol; 2020 Jun; 55():81-87. PubMed ID: 32388086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virulence and Metabolism.
    Richardson AR
    Microbiol Spectr; 2019 Mar; 7(2):. PubMed ID: 31025624
    [No Abstract]   [Full Text] [Related]  

  • 11. Bacterial Nitric Oxide Synthase Is Required for the Staphylococcus aureus Response to Heme Stress.
    Surdel MC; Dutter BF; Sulikowski GA; Skaar EP
    ACS Infect Dis; 2016 Aug; 2(8):572-8. PubMed ID: 27626297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HOST-PATHOGEN INTERACTION IN INFECTIONS DUE TO STAPHYLOCOCCUS AUREUS. STAPHYLOCOCCUS AUREUS VIRULENCE FACTORS.
    Drăgulescu EC; Codiţă I
    Roum Arch Microbiol Immunol; 2015; 74(1-2):46-64. PubMed ID: 26727854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Staphylococcus aureus Lipoic Acid Synthesis Limits Macrophage Reactive Oxygen and Nitrogen Species Production To Promote Survival during Infection.
    Grayczyk JP; Alonzo F
    Infect Immun; 2019 Oct; 87(10):. PubMed ID: 31308080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression and roles of Staphylococcus aureus virulence determinants during colonization and disease.
    Jenkins A; Diep BA; Mai TT; Vo NH; Warrener P; Suzich J; Stover CK; Sellman BR
    mBio; 2015 Feb; 6(1):e02272-14. PubMed ID: 25691592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The modulation of Staphylococcus aureus mRNA turnover.
    Morrison JM; Dunman PM
    Future Microbiol; 2011 Oct; 6(10):1141-50. PubMed ID: 22004033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a lactate-quinone oxidoreductase in Staphylococcus aureus that is essential for virulence.
    Fuller JR; Vitko NP; Perkowski EF; Scott E; Khatri D; Spontak JS; Thurlow LR; Richardson AR
    Front Cell Infect Microbiol; 2011; 1():19. PubMed ID: 22919585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity.
    Richardson AR; Libby SJ; Fang FC
    Science; 2008 Mar; 319(5870):1672-6. PubMed ID: 18356528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TCA cycle inactivation in Staphylococcus aureus alters nitric oxide production in RAW 264.7 cells.
    Massilamany C; Gangaplara A; Gardner DJ; Musser JM; Steffen D; Somerville GA; Reddy J
    Mol Cell Biochem; 2011 Sep; 355(1-2):75-82. PubMed ID: 21519920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consequences of Metabolic Interactions during
    Prince A; Wong Fok Lung T
    Toxins (Basel); 2020 Sep; 12(9):. PubMed ID: 32917040
    [No Abstract]   [Full Text] [Related]  

  • 20. The evolution of vancomycin intermediate Staphylococcus aureus (VISA) and heterogenous-VISA.
    Howden BP; Peleg AY; Stinear TP
    Infect Genet Evol; 2014 Jan; 21():575-82. PubMed ID: 23567819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.