These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 36167596)

  • 21. Analysis of recent segmental duplications in the bovine genome.
    Liu GE; Ventura M; Cellamare A; Chen L; Cheng Z; Zhu B; Li C; Song J; Eichler EE
    BMC Genomics; 2009 Dec; 10():571. PubMed ID: 19951423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads.
    Nurk S; Walenz BP; Rhie A; Vollger MR; Logsdon GA; Grothe R; Miga KH; Eichler EE; Phillippy AM; Koren S
    Genome Res; 2020 Sep; 30(9):1291-1305. PubMed ID: 32801147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CSA: A high-throughput chromosome-scale assembly pipeline for vertebrate genomes.
    Kuhl H; Li L; Wuertz S; Stöck M; Liang XF; Klopp C
    Gigascience; 2020 May; 9(5):. PubMed ID: 32449778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolutionary history of the human multigene families reveals widespread gene duplications throughout the history of animals.
    Pervaiz N; Shakeel N; Qasim A; Zehra R; Anwar S; Rana N; Xue Y; Zhang Z; Bao Y; Abbasi AA
    BMC Evol Biol; 2019 Jun; 19(1):128. PubMed ID: 31221090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Completion of draft bacterial genomes by long-read sequencing of synthetic genomic pools.
    Derakhshani H; Bernier SP; Marko VA; Surette MG
    BMC Genomics; 2020 Jul; 21(1):519. PubMed ID: 32727443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The gain and loss of genes during 600 million years of vertebrate evolution.
    Blomme T; Vandepoele K; De Bodt S; Simillion C; Maere S; Van de Peer Y
    Genome Biol; 2006; 7(5):R43. PubMed ID: 16723033
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vertebrate phylogenomics: reconciled trees and gene duplications.
    Page RD; Cotton JA
    Pac Symp Biocomput; 2002; ():536-47. PubMed ID: 11928506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A haplotype-aware de novo assembly of related individuals using pedigree sequence graph.
    Garg S; Aach J; Li H; Sebenius I; Durbin R; Church G
    Bioinformatics; 2020 Apr; 36(8):2385-2392. PubMed ID: 31860070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effort required to finish shotgun-generated genome sequences differs significantly among vertebrates.
    Blakesley RW; Hansen NF; Gupta J; McDowell JC; Maskeri B; Barnabas BB; Brooks SY; Coleman H; Haghighi P; Ho SL; Schandler K; Stantripop S; Vogt JL; Thomas PJ; ; Bouffard GG; Green ED
    BMC Genomics; 2010 Jan; 11():21. PubMed ID: 20064230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The endothelin system: evolution of vertebrate-specific ligand-receptor interactions by three rounds of genome duplication.
    Braasch I; Volff JN; Schartl M
    Mol Biol Evol; 2009 Apr; 26(4):783-99. PubMed ID: 19174480
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Benchmarking hybrid assemblies of Giardia and prediction of widespread intra-isolate structural variation.
    Pollo SMJ; Reiling SJ; Wit J; Workentine ML; Guy RA; Batoff GW; Yee J; Dixon BR; Wasmuth JD
    Parasit Vectors; 2020 Feb; 13(1):108. PubMed ID: 32111234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-coverage sequencing and annotated assemblies of the budgerigar genome.
    Ganapathy G; Howard JT; Ward JM; Li J; Li B; Li Y; Xiong Y; Zhang Y; Zhou S; Schwartz DC; Schatz M; Aboukhalil R; Fedrigo O; Bukovnik L; Wang T; Wray G; Rasolonjatovo I; Winer R; Knight JR; Koren S; Warren WC; Zhang G; Phillippy AM; Jarvis ED
    Gigascience; 2014; 3():11. PubMed ID: 25061512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NucBreak: location of structural errors in a genome assembly by using paired-end Illumina reads.
    Khelik K; Sandve GK; Nederbragt AJ; Rognes T
    BMC Bioinformatics; 2020 Feb; 21(1):66. PubMed ID: 32085722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of lamprey and hagfish genes reveals a complex history of gene duplications during early vertebrate evolution.
    Escriva H; Manzon L; Youson J; Laudet V
    Mol Biol Evol; 2002 Sep; 19(9):1440-50. PubMed ID: 12200472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent segmental and gene duplications in the mouse genome.
    Cheung J; Wilson MD; Zhang J; Khaja R; MacDonald JR; Heng HH; Koop BF; Scherer SW
    Genome Biol; 2003; 4(8):R47. PubMed ID: 12914656
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes.
    Panopoulou G; Hennig S; Groth D; Krause A; Poustka AJ; Herwig R; Vingron M; Lehrach H
    Genome Res; 2003 Jun; 13(6A):1056-66. PubMed ID: 12799346
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Next-generation sequencing of vertebrate experimental organisms.
    Turner DJ; Keane TM; Sudbery I; Adams DJ
    Mamm Genome; 2009 Jun; 20(6):327-38. PubMed ID: 19452216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phylogenomic approaches to common problems encountered in the analysis of low copy repeats: the sulfotransferase 1A gene family example.
    Bradley ME; Benner SA
    BMC Evol Biol; 2005 Mar; 5():22. PubMed ID: 15752422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phylogenetic dating and characterization of gene duplications in vertebrates: the cartilaginous fish reference.
    Robinson-Rechavi M; Boussau B; Laudet V
    Mol Biol Evol; 2004 Mar; 21(3):580-6. PubMed ID: 14694077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications.
    Smith JJ; Keinath MC
    Genome Res; 2015 Aug; 25(8):1081-90. PubMed ID: 26048246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.