These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36167731)

  • 1. Development of spatially variant photonic crystals to control light in the near-infrared spectrum.
    Volk A; Rai A; Agha I; Payne TE; Touma JE; Gnawali R
    Sci Rep; 2022 Sep; 12(1):16146. PubMed ID: 36167731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-inspired spatially variant photonic crystals for self-collimation and beam-steering applications in the near-infrared spectrum.
    Gnawali R; Volk A; Agha I; Payne TE; Rai A; Touma J
    Sci Rep; 2021 Sep; 11(1):18767. PubMed ID: 34548516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tight control of light beams in photonic crystals with spatially-variant lattice orientation.
    Digaum JL; Pazos JJ; Chiles J; D'Archangel J; Padilla G; Tatulian A; Rumpf RC; Fathpour S; Boreman GD; Kuebler SM
    Opt Express; 2014 Oct; 22(21):25788-804. PubMed ID: 25401613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Independent control of phase and power in spatially variant self-collimating photonic crystals.
    Gutierrez JJ; Martinez NP; Rumpf RC
    J Opt Soc Am A Opt Image Sci Vis; 2019 Sep; 36(9):1534-1539. PubMed ID: 31503847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flat-band localization and self-collimation of light in photonic crystals.
    Myoung N; Park HC; Ramachandran A; Lidorikis E; Ryu JW
    Sci Rep; 2019 Feb; 9(1):2862. PubMed ID: 30814629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ring-type Fabry-Pérot filter based on the self-collimation effect in a 2D photonic crystal.
    Kim TT; Lee SG; Kim SH; Kim JE; Park HY; Kee CS
    Opt Express; 2010 Aug; 18(16):17106-13. PubMed ID: 20721099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conditions for self-collimation in three-dimensional photonic crystals.
    Shin J; Fan S
    Opt Lett; 2005 Sep; 30(18):2397-9. PubMed ID: 16196331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially modulated light harvesting with plasmonic crescent metasurface.
    Wu JW; Cong R; Xu S; Liu YF
    Opt Lett; 2022 Dec; 47(24):6440-6443. PubMed ID: 36538457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twisted Bands with Degenerate Points of Photonic Hypercrystals in Infrared Region.
    Zheng Y; Wang Q; Lin M; Bibbò L; Ouyang Z
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient beaming of self-collimated light from photonic crystals.
    Park JM; Lee SG; Park HY; Kim JE
    Opt Express; 2008 Dec; 16(25):20354-67. PubMed ID: 19065173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanowire-based tunable photonic crystals.
    Rehammar R; Kinaret JM
    Opt Express; 2008 Dec; 16(26):21682-91. PubMed ID: 19104600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice.
    Gao D; Zhou Z; Citrin DS
    J Opt Soc Am A Opt Image Sci Vis; 2008 Mar; 25(3):791-5. PubMed ID: 18311251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-collimation of light in three-dimensional photonic crystals.
    Iliew R; Etrich C; Lederer F
    Opt Express; 2005 Sep; 13(18):7076-85. PubMed ID: 19498730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating wavelength-selective emission with heterogeneous photonic crystals.
    Kurt H
    Appl Opt; 2011 Sep; 50(27):5256-62. PubMed ID: 21947043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially variant periodic structures in electromagnetics.
    Rumpf RC; Pazos JJ; Digaum JL; Kuebler SM
    Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2049):. PubMed ID: 26217058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Assembled Chiral Photonic Crystals from a Colloidal Helix Racemate.
    Lei QL; Ni R; Ma YQ
    ACS Nano; 2018 Jul; 12(7):6860-6870. PubMed ID: 29889494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyper collimation ability of two-dimensional photonic crystals.
    Ru G; Zheng Y; Liu J; Jiang X
    Opt Express; 2019 Apr; 27(9):11968-11978. PubMed ID: 31052743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of planar self-collimating photonic crystals.
    Rumpf RC; Pazos JJ
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jul; 30(7):1297-304. PubMed ID: 24323142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High transmission through waveguide bends by use of polycrystalline photonic-crystal structures.
    Sharkawy A; Pustai D; Shi S; Prather DW
    Opt Lett; 2003 Jul; 28(14):1197-9. PubMed ID: 12885019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-efficiency beam bending using graded photonic crystals.
    Oner BB; Turduev M; Kurt H
    Opt Lett; 2013 May; 38(10):1688-90. PubMed ID: 23938912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.