These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 36168027)
1. Pseudomonas aeruginosa persister cell formation upon antibiotic exposure in planktonic and biofilm state. Patel H; Buchad H; Gajjar D Sci Rep; 2022 Sep; 12(1):16151. PubMed ID: 36168027 [TBL] [Abstract][Full Text] [Related]
2. Isolation of persister cells within the biofilm and relative gene expression analysis of type II toxin/antitoxin system in Pseudomonas aeruginosa isolates in exponential and stationary phases. Zadeh RG; Kalani BS; Ari MM; Talebi M; Razavi S; Jazi FM J Glob Antimicrob Resist; 2022 Mar; 28():30-37. PubMed ID: 34922056 [TBL] [Abstract][Full Text] [Related]
3. Mature Pseudomonas aeruginosa biofilms prevail compared to young biofilms in the presence of ceftazidime. Bowler LL; Zhanel GG; Ball TB; Saward LL Antimicrob Agents Chemother; 2012 Sep; 56(9):4976-9. PubMed ID: 22777043 [TBL] [Abstract][Full Text] [Related]
4. Real-time monitoring of Žiemytė M; Carda-Diéguez M; Rodríguez-Díaz JC; Ventero MP; Mira A; Ferrer MD Emerg Microbes Infect; 2021 Dec; 10(1):2062-2075. PubMed ID: 34663186 [TBL] [Abstract][Full Text] [Related]
5. Mathematical pharmacodynamic modeling for antimicrobial assessment of ceftazidime/colistin versus gentamicin/meropenem combinations against carbapenem-resistant Pseudomonas aeruginosa biofilm. Badawy MSEM; Elkhatib WF; Shebl RI Ann Clin Microbiol Antimicrob; 2023 Jul; 22(1):53. PubMed ID: 37394468 [TBL] [Abstract][Full Text] [Related]
6. Silver nanoparticles as a bioadjuvant of antibiotics against biofilm-mediated infections with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in chronic rhinosinusitis patients. Feizi S; Cooksley CM; Nepal R; Psaltis AJ; Wormald PJ; Vreugde S Pathology; 2022 Jun; 54(4):453-459. PubMed ID: 34844745 [TBL] [Abstract][Full Text] [Related]
7. Pharmacodynamics of ciprofloxacin against Pseudomonas aeruginosa planktonic and biofilm-derived cells. Marques CNH; Nelson SM Lett Appl Microbiol; 2019 Apr; 68(4):350-359. PubMed ID: 30740751 [TBL] [Abstract][Full Text] [Related]
9. The expression of type II TA system genes following persister cell formation in Pseudomonas aeruginosa isolates in the exponential and stationary phases. Golmoradi Zadeh R; Mirshekar M; Sadeghi Kalani B; Pourghader J; Barati M; Masjedian Jazi F Arch Microbiol; 2022 Jul; 204(8):451. PubMed ID: 35781545 [TBL] [Abstract][Full Text] [Related]
10. Understanding Ciprofloxacin Failure in Soares A; Roussel V; Pestel-Caron M; Barreau M; Caron F; Bouffartigues E; Chevalier S; Etienne M Front Microbiol; 2019; 10():2603. PubMed ID: 31798554 [TBL] [Abstract][Full Text] [Related]
11. Evolution of Antibiotic Resistance in Biofilm and Planktonic Pseudomonas aeruginosa Populations Exposed to Subinhibitory Levels of Ciprofloxacin. Ahmed MN; Porse A; Sommer MOA; Høiby N; Ciofu O Antimicrob Agents Chemother; 2018 Aug; 62(8):. PubMed ID: 29760140 [TBL] [Abstract][Full Text] [Related]
12. Reverting antibiotic tolerance of Pseudomonas aeruginosa PAO1 persister cells by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one. Pan J; Bahar AA; Syed H; Ren D PLoS One; 2012; 7(9):e45778. PubMed ID: 23029239 [TBL] [Abstract][Full Text] [Related]
13. Simulated Intravenous versus Inhaled Tobramycin with or without Intravenous Ceftazidime Evaluated against Hypermutable Pseudomonas aeruginosa via a Dynamic Biofilm Model and Mechanism-Based Modeling. Bilal H; Tait JR; Lang Y; Zhou J; Bergen PJ; Peleg AY; Bulitta JB; Oliver A; Nation RL; Landersdorfer CB Antimicrob Agents Chemother; 2022 Mar; 66(3):e0220321. PubMed ID: 35041509 [TBL] [Abstract][Full Text] [Related]
14. Effect of ZnO nanoparticles on biofilm formation and gene expression of the toxin-antitoxin system in clinical isolates of Pseudomonas aeruginosa. Valadbeigi H; Sadeghifard N; Kaviar VH; Haddadi MH; Ghafourian S; Maleki A Ann Clin Microbiol Antimicrob; 2023 Oct; 22(1):89. PubMed ID: 37798613 [TBL] [Abstract][Full Text] [Related]
16. Starvation- and antibiotics-induced formation of persister cells in Pseudomonas aeruginosa. Mlynarcik P; Kolar M Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2017 Mar; 161(1):58-67. PubMed ID: 27886280 [TBL] [Abstract][Full Text] [Related]
17. HigB of Li M; Long Y; Liu Y; Liu Y; Chen R; Shi J; Zhang L; Jin Y; Yang L; Bai F; Jin S; Cheng Z; Wu W Front Cell Infect Microbiol; 2016; 6():125. PubMed ID: 27790409 [TBL] [Abstract][Full Text] [Related]
18. Comparison of biofilm formation and antibiotic resistance pattern of Pseudomonas aeruginosa in human and environmental isolates. Gholami S; Tabatabaei M; Sohrabi N Microb Pathog; 2017 Aug; 109():94-98. PubMed ID: 28549926 [TBL] [Abstract][Full Text] [Related]
19. In vitro efficacy of ciprofloxacin and gentamicin against a biofilm of Pseudomonas aeruginosa and its free-living forms. Agarwal G; Kapil A; Kabra SK; Das BK; Dwivedi SN Natl Med J India; 2005; 18(4):184-6. PubMed ID: 16252547 [TBL] [Abstract][Full Text] [Related]
20. Eradication of Pseudomonas aeruginosa cells by cathodic electrochemical currents delivered with graphite electrodes. Niepa THR; Wang H; Gilbert JL; Ren D Acta Biomater; 2017 Mar; 50():344-352. PubMed ID: 28049020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]