These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36168719)

  • 1. Microbe-bridged disease-metabolite associations identification by heterogeneous graph fusion.
    Feng J; Wu S; Yang H; Ai C; Qiao J; Xu J; Guo F
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36168719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WMGHMDA: a novel weighted meta-graph-based model for predicting human microbe-disease association on heterogeneous information network.
    Long Y; Luo J
    BMC Bioinformatics; 2019 Nov; 20(1):541. PubMed ID: 31675979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic category-sensitive hypergraph inferring and homo-heterogeneous neighbor feature learning for drug-related microbe prediction.
    Xuan P; Xu Z; Cui H; Gu J; Liu C; Zhang T; Wu P
    Bioinformatics; 2024 Sep; 40(9):. PubMed ID: 39292557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting human microbe-disease associations via graph attention networks with inductive matrix completion.
    Long Y; Luo J; Zhang Y; Xia Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32725163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HKFGCN: A novel multiple kernel fusion framework on graph convolutional network to predict microbe-drug associations.
    Wu Z; Li S; Luo L; Ding P
    Comput Biol Chem; 2024 Jun; 110():108041. PubMed ID: 38471354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GACNNMDA: a computational model for predicting potential human microbe-drug associations based on graph attention network and CNN-based classifier.
    Ma Q; Tan Y; Wang L
    BMC Bioinformatics; 2023 Feb; 24(1):35. PubMed ID: 36732704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GLNNMDA: a multimodal prediction model for microbe-drug associations based on global and local features.
    Kuang H; Liu X; Tan H; Zhang Z; Zeng B; Wang L
    Sci Rep; 2024 Sep; 14(1):20847. PubMed ID: 39242712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensembling graph attention networks for human microbe-drug association prediction.
    Long Y; Wu M; Liu Y; Kwoh CK; Luo J; Li X
    Bioinformatics; 2020 Dec; 36(Suppl_2):i779-i786. PubMed ID: 33381844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting human microbe-drug associations via graph convolutional network with conditional random field.
    Long Y; Wu M; Kwoh CK; Luo J; Li X
    Bioinformatics; 2020 Dec; 36(19):4918-4927. PubMed ID: 32597948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying microbe-disease association based on graph convolutional attention network: Case study of liver cirrhosis and epilepsy.
    Shi K; Li L; Wang Z; Chen H; Chen Z; Fang S
    Front Neurosci; 2022; 16():1124315. PubMed ID: 36741060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graph2MDA: a multi-modal variational graph embedding model for predicting microbe-drug associations.
    Deng L; Huang Y; Liu X; Liu H
    Bioinformatics; 2022 Jan; 38(4):1118-1125. PubMed ID: 34864873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KGNMDA: A Knowledge Graph Neural Network Method for Predicting Microbe-Disease Associations.
    Jiang C; Tang M; Jin S; Huang W; Liu X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1147-1155. PubMed ID: 35724280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting potential microbe-disease associations with graph attention autoencoder, positive-unlabeled learning, and deep neural network.
    Peng L; Huang L; Tian G; Wu Y; Li G; Cao J; Wang P; Li Z; Duan L
    Front Microbiol; 2023; 14():1244527. PubMed ID: 37789848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MGATMDA: Predicting Microbe-Disease Associations via Multi-Component Graph Attention Network.
    Liu D; Liu J; Luo Y; He Q; Deng L
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3578-3585. PubMed ID: 34587092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GSAMDA: a computational model for predicting potential microbe-drug associations based on graph attention network and sparse autoencoder.
    Tan Y; Zou J; Kuang L; Wang X; Zeng B; Zhang Z; Wang L
    BMC Bioinformatics; 2022 Nov; 23(1):492. PubMed ID: 36401174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of biomarker-disease associations based on graph attention network and text representation.
    Yang M; Huang ZA; Gu W; Han K; Pan W; Yang X; Zhu Z
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MVGCNMDA: Multi-view Graph Augmentation Convolutional Network for Uncovering Disease-Related Microbes.
    Hua M; Yu S; Liu T; Yang X; Wang H
    Interdiscip Sci; 2022 Sep; 14(3):669-682. PubMed ID: 35428964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graph neural network and multi-data heterogeneous networks for microbe-disease prediction.
    Gong H; You X; Jin M; Meng Y; Zhang H; Yang S; Xu J
    Front Microbiol; 2022; 13():1077111. PubMed ID: 36620040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GMMAD: a comprehensive database of human gut microbial metabolite associations with diseases.
    Wang CY; Kuang X; Wang QQ; Zhang GQ; Cheng ZS; Deng ZX; Guo FB
    BMC Genomics; 2023 Aug; 24(1):482. PubMed ID: 37620754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbe-Disease Association Prediction Using RGCN Through Microbe-Drug-Disease Network.
    Wang Y; Lei X; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3353-3362. PubMed ID: 37027603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.