These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 36168847)

  • 1. Seed-directed synthesis of chiroptically active Au nanocrystals of varied symmetries.
    Googasian JS; Lewis GR; Woessner ZJ; Ringe E; Skrabalak SE
    Chem Commun (Camb); 2022 Oct; 58(82):11575-11578. PubMed ID: 36168847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Facile and Rational Method to Tailor the Symmetry of Au@Ag Nanoparticles.
    Ni B; Zhou J; Stolz L; Cölfen H
    Adv Mater; 2023 Apr; 35(15):e2209810. PubMed ID: 36653018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seeding a New Kind of Garden: Synthesis of Architecturally Defined Multimetallic Nanostructures by Seed-Mediated Co-Reduction.
    Weiner RG; Kunz MR; Skrabalak SE
    Acc Chem Res; 2015 Oct; 48(10):2688-95. PubMed ID: 26339803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shell-programmed Au nanoparticle heterodimers with customized chiroptical activity.
    Zhao Y; Xu L; Ma W; Liu L; Wang L; Kuang H; Xu C
    Small; 2014 Nov; 10(22):4770-7. PubMed ID: 25136975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology-Controlled Synthesis of Hybrid Nanocrystals via a Selenium-Mediated Strategy with Ligand Shielding Effect: The Case of Dual Plasmonic Au-Cu
    Zou Y; Sun C; Gong W; Yang X; Huang X; Yang T; Lu W; Jiang J
    ACS Nano; 2017 Apr; 11(4):3776-3785. PubMed ID: 28394555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral nanocrystals: plasmonic spectra and circular dichroism.
    Fan Z; Govorov AO
    Nano Lett; 2012 Jun; 12(6):3283-9. PubMed ID: 22591323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interparticle gap geometry effects on chiroptical properties of plasmonic nanoparticle assemblies.
    Li F; Chandrasekar S; Ahmed A; Klinkova A
    Nanotechnology; 2021 Dec; 33(12):. PubMed ID: 34852331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of shape in substrate-induced plasmonic shift and mode uncovering on gold nanocrystals.
    Qin F; Cui X; Ruan Q; Lai Y; Wang J; Ma H; Lin HQ
    Nanoscale; 2016 Oct; 8(40):17645-17657. PubMed ID: 27714128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media.
    Govorov AO; Fan Z
    Chemphyschem; 2012 Jul; 13(10):2551-60. PubMed ID: 22344931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic and sensing properties of vertically oriented hexagonal gold nanoplates.
    Yin H; Guo Y; Cui X; Lu W; Yang Z; Yang B; Wang J
    Nanoscale; 2018 Aug; 10(31):15058-15070. PubMed ID: 30059125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembled plasmonic asymmetric heterodimers with tailorable chiroptical response.
    Hao C; Xu L; Ma W; Wang L; Kuang H; Xu C
    Small; 2014 May; 10(9):1805-12. PubMed ID: 24523129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous and directed symmetry breaking in the formation of chiral nanocrystals.
    Hananel U; Ben-Moshe A; Diamant H; Markovich G
    Proc Natl Acad Sci U S A; 2019 Jun; 116(23):11159-11164. PubMed ID: 31097596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral Surface and Geometry of Metal Nanocrystals.
    Im SW; Ahn HY; Kim RM; Cho NH; Kim H; Lim YC; Lee HE; Nam KT
    Adv Mater; 2020 Oct; 32(41):e1905758. PubMed ID: 31834668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral Plasmonic Nanocrystals for Generation of Hot Electrons: Toward Polarization-Sensitive Photochemistry.
    Liu T; Besteiro LV; Liedl T; Correa-Duarte MA; Wang Z; Govorov AO
    Nano Lett; 2019 Feb; 19(2):1395-1407. PubMed ID: 30681343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances.
    Ben-Moshe A; Maoz BM; Govorov AO; Markovich G
    Chem Soc Rev; 2013 Aug; 42(16):7028-41. PubMed ID: 23788027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The chiral nano-world: chiroptically active quantum nanostructures.
    Milton FP; Govan J; Mukhina MV; Gun'ko YK
    Nanoscale Horiz; 2016 Jan; 1(1):14-26. PubMed ID: 32260598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facet-dependent and au nanocrystal-enhanced electrical and photocatalytic properties of Au-Cu2O core-shell heterostructures.
    Kuo CH; Yang YC; Gwo S; Huang MH
    J Am Chem Soc; 2011 Feb; 133(4):1052-7. PubMed ID: 21174406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiroptical Symmetry Analysis: Exciton Chirality-Based Formulae to Understand the Chiroptical Responses of
    Castro-Fernández S; Peña-Gallego Á; Mosquera RA; Alonso-Gómez JL
    Molecules; 2019 Jan; 24(1):. PubMed ID: 30609677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiroptically Active Plasmonic Nanoparticles Having Hidden Helicity and Reversible Aqueous Solvent Effect on Chiroptical Activity.
    Liu J; Yang L; Huang Z
    Small; 2016 Nov; 12(42):5902-5909. PubMed ID: 27592699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twisted bio-nanorods serve as a template for constructing chiroptically active nanoflowers.
    Yu H; Huang H; Liang J; Deng J
    Nanoscale; 2018 Jul; 10(25):12163-12168. PubMed ID: 29920569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.