These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 36169113)

  • 1. Electro-Microfluidic Assembly Platform for Manipulating Colloidal Structures inside Water-in-Oil Emulsion Droplets.
    Shen S; Qin X; Feng H; Xie S; Yi Z; Jin M; Zhou G; Akinoglu EM; Mulvaney P; Shui L
    Adv Sci (Weinh); 2022 Nov; 9(32):e2203341. PubMed ID: 36169113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectrophoresis Response of Water-in-Oil-in-Water Double Emulsion Droplets with Singular or Dual Cores.
    Jiang T; Jia Y; Sun H; Deng X; Tang D; Ren Y
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33348930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reflective display based on the electro-microfluidic assembly of particles within suppressed water-in-oil droplet array.
    Shen S; Feng H; Deng Y; Xie S; Yi Z; Jin M; Zhou G; Mulvaney P; Shui L
    Light Sci Appl; 2023 Dec; 12(1):290. PubMed ID: 38052798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical actuation of dielectric droplets by negative liquid dielectrophoresis.
    Piao Y; Yu K; Jones TB; Wang W
    Electrophoresis; 2021 Dec; 42(23):2490-2497. PubMed ID: 34310746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated microfluidic system with simultaneous emulsion generation and concentration.
    Koppula KS; Fan R; Veerapalli KR; Wan J
    J Colloid Interface Sci; 2016 Mar; 466():162-7. PubMed ID: 26722797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct current dielectrophoretic manipulation of the ionic liquid droplets in water.
    Zhao K; Li D
    J Chromatogr A; 2018 Jul; 1558():96-106. PubMed ID: 29759650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of Janus droplets and oil droplets in microchannels by wall-induced dielectrophoresis.
    Li M; Li D
    J Chromatogr A; 2017 Jun; 1501():151-160. PubMed ID: 28434715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-powered droplet manipulation system for microfluidics based on triboelectric nanogenerator harvesting rotary energy.
    Yu J; Wei X; Guo Y; Zhang Z; Rui P; Zhao Y; Zhang W; Shi S; Wang P
    Lab Chip; 2021 Jan; 21(2):284-295. PubMed ID: 33439205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principles of droplet electrohydrodynamics for lab-on-a-chip.
    Zeng J; Korsmeyer T
    Lab Chip; 2004 Aug; 4(4):265-77. PubMed ID: 15269791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric manipulation on deformation of ionic ferrofluid sessile droplets.
    Zhu GP; Li XA; Wang QY; Fang MH; Ding YC
    Electrophoresis; 2024 Jul; 45(13-14):1243-1251. PubMed ID: 38308502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled generation of droplets using an electric field in a flow-focusing paper-based device.
    Jiang T; Wu Y
    Electrophoresis; 2022 Feb; 43(4):601-608. PubMed ID: 34747509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homogeneous and heterogeneous binary colloidal clusters formed by evaporation-induced self-assembly inside droplets.
    Cho YS; Yi GR; Kim SH; Elsesser MT; Breed DR; Yang SM
    J Colloid Interface Sci; 2008 Feb; 318(1):124-33. PubMed ID: 17976635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical characterization of inter-core coalescence by AC dielectrophoresis in double-emulsion droplets.
    Tao Y; Liu W; Ge Z; Song C; Xue R; Ren Y
    Electrophoresis; 2022 Nov; 43(21-22):2141-2155. PubMed ID: 35661383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplets formation and merging in two-phase flow microfluidics.
    Gu H; Duits MH; Mugele F
    Int J Mol Sci; 2011; 12(4):2572-97. PubMed ID: 21731459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic platform for the synthesis of polymer and polymer-protein-based protocells.
    O'Callaghan JA; Kamat NP; Vargo KB; Chattaraj R; Lee D; Hammer DA
    Eur Phys J E Soft Matter; 2024 Jun; 47(6):37. PubMed ID: 38829453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encapsulated droplets with metered and removable oil shells by electrowetting and dielectrophoresis.
    Fan SK; Hsu YW; Chen CH
    Lab Chip; 2011 Aug; 11(15):2500-8. PubMed ID: 21666906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-module microfluidic platform for continuous pre-concentration of water-soluble ions and separation of oil droplets from oil-in-water (O/W) emulsions using a DC-biased AC electrokinetic technique.
    Das D; Phan DT; Zhao Y; Kang Y; Chan V; Yang C
    Electrophoresis; 2017 Mar; 38(5):645-652. PubMed ID: 27935087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic formation of highly monodispersed multiple cored droplets using needle-based system in parallel mode.
    Lian Z; Chan Y; Luo Y; Yang X; Koh KS; Wang J; Chen GZ; Ren Y; He J
    Electrophoresis; 2020 Jun; 41(10-11):891-901. PubMed ID: 31998972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pumping of electrolyte with mobile liquid metal droplets driven by continuous electrowetting: A full-scaled simulation study considering surface-coupled electrocapillary two-phase flow.
    Liu W; Tao Y; Ge Z; Zhou J; Xu R; Ren Y
    Electrophoresis; 2021 Apr; 42(7-8):950-966. PubMed ID: 33119900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.