These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 36169186)
1. Novel nano-hydroxyapatite coating of additively manufactured three-dimensional porous implants improves bone ingrowth and initial fixation. Watanabe R; Takahashi H; Matsugaki A; Uemukai T; Kogai Y; Imagama T; Yukata K; Nakano T; Sakai T J Biomed Mater Res B Appl Biomater; 2023 Feb; 111(2):453-462. PubMed ID: 36169186 [TBL] [Abstract][Full Text] [Related]
2. The effect of operative fit and hydroxyapatite coating on the mechanical and biological response to porous implants. Dalton JE; Cook SD; Thomas KA; Kay JF J Bone Joint Surg Am; 1995 Jan; 77(1):97-110. PubMed ID: 7822360 [TBL] [Abstract][Full Text] [Related]
3. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants. Cheong VS; Fromme P; Mumith A; Coathup MJ; Blunn GW J Mech Behav Biomed Mater; 2018 Nov; 87():230-239. PubMed ID: 30086415 [TBL] [Abstract][Full Text] [Related]
4. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique. Hara D; Nakashima Y; Sato T; Hirata M; Kanazawa M; Kohno Y; Yoshimoto K; Yoshihara Y; Nakamura A; Nakao Y; Iwamoto Y Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():1047-1052. PubMed ID: 26652463 [TBL] [Abstract][Full Text] [Related]
5. Osteoconductivity of bioactive Ti-6Al-4V implants with lattice-shaped interconnected large pores fabricated by electron beam melting. Goto M; Matsumine A; Yamaguchi S; Takahashi H; Akeda K; Nakamura T; Asanuma K; Matsushita T; Kokubo T; Sudo A J Biomater Appl; 2021 Apr; 35(9):1153-1167. PubMed ID: 33106079 [TBL] [Abstract][Full Text] [Related]
6. Characterization of bone ingrowth and interface mechanics of a new porous 3D printed biomaterial: an animal study. Tanzer M; Chuang PJ; Ngo CG; Song L; TenHuisen KS Bone Joint J; 2019 Jun; 101-B(6_Supple_B):62-67. PubMed ID: 31146557 [TBL] [Abstract][Full Text] [Related]
7. Complex geometry and integrated macro-porosity: Clinical applications of electron beam melting to fabricate bespoke bone-anchored implants. Palmquist A; Jolic M; Hryha E; Shah FA Acta Biomater; 2023 Jan; 156():125-145. PubMed ID: 35675890 [TBL] [Abstract][Full Text] [Related]
8. Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Søballe K Acta Orthop Scand Suppl; 1993; 255():1-58. PubMed ID: 8237337 [TBL] [Abstract][Full Text] [Related]
10. Implant-delivered Alendronate Causes a Dose-dependent Response on Net Bone Formation Around Porous Titanium Implants in Canines. Pura JA; Bobyn JD; Tanzer M Clin Orthop Relat Res; 2016 May; 474(5):1224-33. PubMed ID: 26831478 [TBL] [Abstract][Full Text] [Related]
11. In vivo performance of selective electron beam-melted Ti-6Al-4V structures. Ponader S; von Wilmowsky C; Widenmayer M; Lutz R; Heinl P; Körner C; Singer RF; Nkenke E; Neukam FW; Schlegel KA J Biomed Mater Res A; 2010 Jan; 92(1):56-62. PubMed ID: 19165781 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of hydroxyapatite coated titanium porous coatings on Ti-6Al-4V substrates by plasma sprayed method. Yang CY; Chen CR; Chang E; Lee TM J Biomed Mater Res B Appl Biomater; 2007 Aug; 82(2):450-9. PubMed ID: 17245748 [TBL] [Abstract][Full Text] [Related]
13. Assessment of osteoinduction using a porous hydroxyapatite coating prepared by micro-arc oxidation on a new titanium alloy. Jing W; Zhang M; Jin L; Zhao J; Gao Q; Ren M; Fan Q Int J Surg; 2015 Dec; 24(Pt A):51-6. PubMed ID: 26306772 [TBL] [Abstract][Full Text] [Related]
14. Osseointegrability of 3D-printed porous titanium alloy implant on tibial shaft bone defect in rabbit model. Phuoc HD; Hoang PN; Yang S; Fraser D; Nguyen VT PLoS One; 2023; 18(9):e0282457. PubMed ID: 37682822 [TBL] [Abstract][Full Text] [Related]
15. Effect of surface roughness of hydroxyapatite-coated titanium on the bone-implant interface shear strength. Hayashi K; Inadome T; Tsumura H; Nakashima Y; Sugioka Y Biomaterials; 1994 Nov; 15(14):1187-91. PubMed ID: 7534485 [TBL] [Abstract][Full Text] [Related]
16. The effect of strontium and silicon substituted hydroxyapatite electrochemical coatings on bone ingrowth and osseointegration of selective laser sintered porous metal implants. Mumith A; Cheong VS; Fromme P; Coathup MJ; Blunn GW PLoS One; 2020; 15(1):e0227232. PubMed ID: 31923253 [TBL] [Abstract][Full Text] [Related]
18. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Taniguchi N; Fujibayashi S; Takemoto M; Sasaki K; Otsuki B; Nakamura T; Matsushita T; Kokubo T; Matsuda S Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():690-701. PubMed ID: 26652423 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of biological properties of electron beam melted Ti6Al4V implant with biomimetic coating in vitro and in vivo. Li X; Feng YF; Wang CT; Li GC; Lei W; Zhang ZY; Wang L PLoS One; 2012; 7(12):e52049. PubMed ID: 23272208 [TBL] [Abstract][Full Text] [Related]