BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36169203)

  • 1. Spike-wave discharges in Sprague-Dawley rats reflect precise intra- and interhemispheric synchronization of somatosensory cortex.
    Taylor JA; Smith ZZ; Barth DS
    J Neurophysiol; 2022 Nov; 128(5):1152-1167. PubMed ID: 36169203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of somatosensory evoked potentials during wake-sleep states and spike-wave discharges in the rat.
    Shaw FZ; Lee SY; Chiu TH
    Sleep; 2006 Mar; 29(3):285-93. PubMed ID: 16553013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anatomic organization of evoked potentials in rat parietotemporal cortex: somatosensory and auditory responses.
    Barth DS; Kithas J; Di S
    J Neurophysiol; 1993 Jun; 69(6):1837-49. PubMed ID: 8394409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spike-wave discharges in adult Sprague-Dawley rats and their implications for animal models of temporal lobe epilepsy.
    Pearce PS; Friedman D; Lafrancois JJ; Iyengar SS; Fenton AA; Maclusky NJ; Scharfman HE
    Epilepsy Behav; 2014 Mar; 32():121-31. PubMed ID: 24534480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter- and intra-hemispheric spatiotemporal organization of spontaneous electrocortical oscillations.
    MacDonald KD; Brett B; Barth DS
    J Neurophysiol; 1996 Jul; 76(1):423-37. PubMed ID: 8836234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voluntary Control of Epileptiform Spike-Wave Discharges in Awake Rats.
    Taylor JA; Rodgers KM; Bercum FM; Booth CJ; Dudek FE; Barth DS
    J Neurosci; 2017 Jun; 37(24):5861-5869. PubMed ID: 28522734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spike-wave discharges in absence epilepsy: segregation of electrographic components reveals distinct pathways of seizure activity.
    Terlau J; Yang JW; Khastkhodaei Z; Seidenbecher T; Luhmann HJ; Pape HC; Lüttjohann A
    J Physiol; 2020 Jun; 598(12):2397-2414. PubMed ID: 32144956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats.
    Meeren HK; Pijn JP; Van Luijtelaar EL; Coenen AM; Lopes da Silva FH
    J Neurosci; 2002 Feb; 22(4):1480-95. PubMed ID: 11850474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory-evoked high-frequency (gamma-band) oscillating potentials in somatosensory cortex of the unanesthetized rat.
    Jones MS; Barth DS
    Brain Res; 1997 Sep; 768(1-2):167-76. PubMed ID: 9369313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IL-1β is induced in reactive astrocytes in the somatosensory cortex of rats with genetic absence epilepsy at the onset of spike-and-wave discharges, and contributes to their occurrence.
    Akin D; Ravizza T; Maroso M; Carcak N; Eryigit T; Vanzulli I; Aker RG; Vezzani A; Onat FY
    Neurobiol Dis; 2011 Dec; 44(3):259-69. PubMed ID: 21645619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistence of cortical sensory processing during absence seizures in human and an animal model: evidence from EEG and intracellular recordings.
    Chipaux M; Vercueil L; Kaminska A; Mahon S; Charpier S
    PLoS One; 2013; 8(3):e58180. PubMed ID: 23483991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interhemispheric desynchronization of spontaneous spike-wave discharges by corpus callosum transection in rats with petit mal-like epilepsy.
    Vergnes M; Marescaux C; Lannes B; Depaulis A; Micheletti G; Warter JM
    Epilepsy Res; 1989; 4(1):8-13. PubMed ID: 2502389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High frequency (gamma-band) oscillating potentials in rat somatosensory and auditory cortex.
    MacDonald KD; Barth DS
    Brain Res; 1995 Oct; 694(1-2):1-12. PubMed ID: 8974632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhythmic neuronal activity in S2 somatosensory and insular cortices contribute to the initiation of absence-related spike-and-wave discharges.
    Zheng TW; O'Brien TJ; Morris MJ; Reid CA; Jovanovska V; O'Brien P; van Raay L; Gandrathi AK; Pinault D
    Epilepsia; 2012 Nov; 53(11):1948-58. PubMed ID: 23083325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relations between cortical and thalamic cellular activities during absence seizures in rats.
    Seidenbecher T; Staak R; Pape HC
    Eur J Neurosci; 1998 Mar; 10(3):1103-12. PubMed ID: 9753178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical control of generalized absence seizures: effect of lidocaine applied to the somatosensory cortex in WAG/Rij rats.
    Sitnikova E; van Luijtelaar G
    Brain Res; 2004 Jun; 1012(1-2):127-37. PubMed ID: 15158169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unilateral and Bilateral Cortical Resection: Effects on Spike-Wave Discharges in a Genetic Absence Epilepsy Model.
    Scicchitano F; van Rijn CM; van Luijtelaar G
    PLoS One; 2015; 10(8):e0133594. PubMed ID: 26262879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory coding is impaired in rat absence epilepsy.
    Studer F; Laghouati E; Jarre G; David O; Pouyatos B; Depaulis A
    J Physiol; 2019 Feb; 597(3):951-966. PubMed ID: 30548850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progressive, Seizure-Like, Spike-Wave Discharges Are Common in Both Injured and Uninjured Sprague-Dawley Rats: Implications for the Fluid Percussion Injury Model of Post-Traumatic Epilepsy.
    Rodgers KM; Dudek FE; Barth DS
    J Neurosci; 2015 Jun; 35(24):9194-204. PubMed ID: 26085641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the activity of the corticostriatal networks during spike-and-wave discharges in a genetic model of absence epilepsy.
    Slaght SJ; Paz T; Chavez M; Deniau JM; Mahon S; Charpier S
    J Neurosci; 2004 Jul; 24(30):6816-25. PubMed ID: 15282287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.