These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 36169207)
1. Investigating the Active Oxidants Involved in Cytochrome P450 Catalyzed Sulfoxidation Reactions. Podgorski MN; Coleman T; Churchman LR; Bruning JB; De Voss JJ; Bell SG Chemistry; 2022 Dec; 28(72):e202202428. PubMed ID: 36169207 [TBL] [Abstract][Full Text] [Related]
2. An In Crystallo Reaction with an Engineered Cytochrome P450 Peroxygenase. Lee JHZ; Bruning JB; Bell SG Chemistry; 2024 Feb; 30(8):e202303335. PubMed ID: 37971151 [TBL] [Abstract][Full Text] [Related]
4. Effect of the axial ligand on substrate sulfoxidation mediated by iron(IV)-oxo porphyrin cation radical oxidants. Kumar D; Sastry GN; de Visser SP Chemistry; 2011 May; 17(22):6196-205. PubMed ID: 21469227 [TBL] [Abstract][Full Text] [Related]
5. Characterisation of the heme aqua-ligand coordination environment in an engineered peroxygenase cytochrome P450 variant. Podgorski MN; Lee JHZ; Harbort JS; Nguyen GTH; Doherty DZ; Donald WA; Harmer JR; Bruning JB; Bell SG J Inorg Biochem; 2023 Dec; 249():112391. PubMed ID: 37837941 [TBL] [Abstract][Full Text] [Related]
6. Hydroperoxoferric heme intermediate as a second electrophilic oxidant in cytochrome P450-catalyzed reactions. Jin S; Bryson TA; Dawson JH J Biol Inorg Chem; 2004 Sep; 9(6):644-53. PubMed ID: 15365901 [TBL] [Abstract][Full Text] [Related]
7. Investigation of the requirements for efficient and selective cytochrome P450 monooxygenase catalysis across different reactions. Podgorski MN; Coleman T; Chao RR; De Voss JJ; Bruning JB; Bell SG J Inorg Biochem; 2020 Feb; 203():110913. PubMed ID: 31759265 [TBL] [Abstract][Full Text] [Related]
8. The Stereoselective Oxidation of para-Substituted Benzenes by a Cytochrome P450 Biocatalyst. Chao RR; Lau IC; Coleman T; Churchman LR; Child SA; Lee JHZ; Bruning JB; De Voss JJ; Bell SG Chemistry; 2021 Oct; 27(59):14765-14777. PubMed ID: 34350662 [TBL] [Abstract][Full Text] [Related]
9. Selective Oxidations Using a Cytochrome P450 Enzyme Variant Driven with Surrogate Oxygen Donors and Light. Lee JHZ; Podgorski MN; Moir M; Gee AR; Bell SG Chemistry; 2022 Sep; 28(49):e202201366. PubMed ID: 35712785 [TBL] [Abstract][Full Text] [Related]
10. Exploring the Factors which Result in Cytochrome P450 Catalyzed Desaturation Versus Hydroxylation. Coleman T; Doherty DZ; Zhang T; Podgorski MN; Qiao R; Lee JHZ; Bruning JB; De Voss JJ; Zhou W; Bell SG Chem Asian J; 2022 Dec; 17(24):e202200986. PubMed ID: 36268769 [TBL] [Abstract][Full Text] [Related]
11. Oxidizing intermediates in P450 catalysis: a case for multiple oxidants. Modi AR; Dawson JH Adv Exp Med Biol; 2015; 851():63-81. PubMed ID: 26002731 [TBL] [Abstract][Full Text] [Related]
12. Can a single oxidant with two spin states masquerade as two different oxidants? A study of the sulfoxidation mechanism by cytochrome p450. Sharma PK; De Visser SP; Shaik S J Am Chem Soc; 2003 Jul; 125(29):8698-9. PubMed ID: 12862444 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the substrate range of CYP199A4: modification of the partition between hydroxylation and desaturation activities by substrate and protein engineering. Bell SG; Zhou R; Yang W; Tan AB; Gentleman AS; Wong LL; Zhou W Chemistry; 2012 Dec; 18(52):16677-88. PubMed ID: 23135838 [TBL] [Abstract][Full Text] [Related]
14. Selective carbon-hydrogen bond hydroxylation using an engineered cytochrome P450 peroxygenase. Akter J; Stockdale TP; Child SA; Lee JHZ; De Voss JJ; Bell SG J Inorg Biochem; 2023 Jul; 244():112209. PubMed ID: 37080140 [TBL] [Abstract][Full Text] [Related]
15. To Be, or Not to Be, an Inhibitor: A Comparison of Azole Interactions with and Oxidation by a Cytochrome P450 Enzyme. Podgorski MN; Coleman T; Giang PD; Wang CR; Bruning JB; Bernhardt PV; De Voss JJ; Bell SG Inorg Chem; 2022 Jan; 61(1):236-245. PubMed ID: 34910500 [TBL] [Abstract][Full Text] [Related]
16. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants. Oloo WN; Que L Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131 [TBL] [Abstract][Full Text] [Related]
17. Gauging the relative oxidative powers of compound I, ferric-hydroperoxide, and the ferric-hydrogen peroxide species of cytochrome P450 toward C-H hydroxylation of a radical clock substrate. Derat E; Kumar D; Hirao H; Shaik S J Am Chem Soc; 2006 Jan; 128(2):473-84. PubMed ID: 16402834 [TBL] [Abstract][Full Text] [Related]
18. Identification of the rate-limiting step of the peroxygenase reactions catalyzed by the thermophilic cytochrome P450 from Sulfolobus tokodaii strain 7. Hayakawa S; Matsumura H; Nakamura N; Yohda M; Ohno H FEBS J; 2014 Mar; 281(5):1409-1416. PubMed ID: 24410761 [TBL] [Abstract][Full Text] [Related]
19. Can ferric-superoxide act as a potential oxidant in P450(cam)? QM/MM investigation of hydroxylation, epoxidation, and sulfoxidation. Lai W; Shaik S J Am Chem Soc; 2011 Apr; 133(14):5444-52. PubMed ID: 21413763 [TBL] [Abstract][Full Text] [Related]
20. Biophysical Techniques for Distinguishing Ligand Binding Modes in Cytochrome P450 Monooxygenases. Podgorski MN; Harbort JS; Coleman T; Stok JE; Yorke JA; Wong LL; Bruning JB; Bernhardt PV; De Voss JJ; Harmer JR; Bell SG Biochemistry; 2020 Mar; 59(9):1038-1050. PubMed ID: 32058707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]