BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

605 related articles for article (PubMed ID: 36169400)

  • 1. A dynamic and expandable digital 3D-atlas maker for monitoring the temporal changes in tissue growth during hindbrain morphogenesis.
    Blanc M; Dalmasso G; Udina F; Pujades C
    Elife; 2022 Sep; 11():. PubMed ID: 36169400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing and optimizing 3D atlases from 2D data with application to the developing mouse brain.
    Young DM; Fazel Darbandi S; Schwartz G; Bonzell Z; Yuruk D; Nojima M; Gole LC; Rubenstein JL; Yu W; Sanders SJ
    Elife; 2021 Feb; 10():. PubMed ID: 33570495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single cell transcriptome atlas of the developing zebrafish hindbrain.
    Tambalo M; Mitter R; Wilkinson DG
    Development; 2020 Mar; 147(6):. PubMed ID: 32094115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images.
    Wen C; Miura T; Voleti V; Yamaguchi K; Tsutsumi M; Yamamoto K; Otomo K; Fujie Y; Teramoto T; Ishihara T; Aoki K; Nemoto T; Hillman EM; Kimura KD
    Elife; 2021 Mar; 10():. PubMed ID: 33781383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of wiring specificity in an olfactory map revealed by neuron type-specific, time-lapse imaging of dendrite targeting.
    Wong KKL; Li T; Fu TM; Liu G; Lyu C; Kohani S; Xie Q; Luginbuhl DJ; Upadhyayula S; Betzig E; Luo L
    Elife; 2023 Mar; 12():. PubMed ID: 36975203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurovascular development in the embryonic zebrafish hindbrain.
    Ulrich F; Ma LH; Baker RG; Torres-Vázquez J
    Dev Biol; 2011 Sep; 357(1):134-51. PubMed ID: 21745463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interplay of atoh1 genes in the lower rhombic lip during hindbrain morphogenesis.
    Belzunce I; Belmonte-Mateos C; Pujades C
    PLoS One; 2020; 15(2):e0228225. PubMed ID: 32012186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CytoCensus, mapping cell identity and division in tissues and organs using machine learning.
    Hailstone M; Waithe D; Samuels TJ; Yang L; Costello I; Arava Y; Robertson E; Parton RM; Davis I
    Elife; 2020 May; 9():. PubMed ID: 32423529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RatInABox, a toolkit for modelling locomotion and neuronal activity in continuous environments.
    George TM; Rastogi M; de Cothi W; Clopath C; Stachenfeld K; Barry C
    Elife; 2024 Feb; 13():. PubMed ID: 38334473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential addition of neuronal stem cell temporal cohorts generates a feed-forward circuit in the
    Wang YW; Wreden CC; Levy M; Meng JL; Marshall ZD; MacLean J; Heckscher E
    Elife; 2022 Jun; 11():. PubMed ID: 35723253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The neurogenic fate of the hindbrain boundaries relies on Notch3-dependent asymmetric cell divisions.
    Hevia CF; Engel-Pizcueta C; Udina F; Pujades C
    Cell Rep; 2022 Jun; 39(10):110915. PubMed ID: 35675784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal development and migration in zebrafish hindbrain explants.
    Bingham SM; Toussaint G; Chandrasekhar A
    J Neurosci Methods; 2005 Nov; 149(1):42-9. PubMed ID: 15970334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Light-Sheet Fluorescence Microscopy of Cranial Neurons and Vasculature during Zebrafish Embryogenesis.
    Park OK; Kwak J; Jung YJ; Kim YH; Hong HS; Hwang BJ; Kwon SH; Kee Y
    Mol Cells; 2015 Nov; 38(11):975-81. PubMed ID: 26429501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zbtb16 mediates a switch between Fgf signalling regimes in the developing hindbrain.
    Leino SA; Constable SCJ; Streit A; Wilkinson DG
    Development; 2023 Sep; 150(18):. PubMed ID: 37642135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-Guided Segmentation for 3D Neuron Reconstruction.
    Yang B; Liu M; Wang Y; Zhang K; Meijering E
    IEEE Trans Med Imaging; 2022 Apr; 41(4):903-914. PubMed ID: 34748483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3D adult zebrafish brain atlas (AZBA) for the digital age.
    Kenney JW; Steadman PE; Young O; Shi MT; Polanco M; Dubaishi S; Covert K; Mueller T; Frankland PW
    Elife; 2021 Nov; 10():. PubMed ID: 34806976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stretching of the retinal pigment epithelium contributes to zebrafish optic cup morphogenesis.
    Moreno-Mármol T; Ledesma-Terrón M; Tabanera N; Martin-Bermejo MJ; Cardozo MJ; Cavodeassi F; Bovolenta P
    Elife; 2021 Sep; 10():. PubMed ID: 34545806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The zebrafish cerebellar upper rhombic lip generates tegmental hindbrain nuclei by long-distance migration in an evolutionary conserved manner.
    Volkmann K; Chen YY; Harris MP; Wullimann MF; Köster RW
    J Comp Neurol; 2010 Jul; 518(14):2794-817. PubMed ID: 20506476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.