These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36169590)

  • 21. RootScape: a landmark-based system for rapid screening of root architecture in Arabidopsis.
    Ristova D; Rosas U; Krouk G; Ruffel S; Birnbaum KD; Coruzzi GM
    Plant Physiol; 2013 Mar; 161(3):1086-96. PubMed ID: 23335624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic control of root plasticity in response to salt stress in maize.
    Li P; Yang X; Wang H; Pan T; Wang Y; Xu Y; Xu C; Yang Z
    Theor Appl Genet; 2021 May; 134(5):1475-1492. PubMed ID: 33661350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genotypic diversity and plasticity of root system architecture to nitrogen availability in oilseed rape.
    Lecarpentier C; Pagès L; Richard-Molard C
    PLoS One; 2021; 16(5):e0250966. PubMed ID: 34014943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic Variability of
    Deja-Muylle A; Opdenacker D; Parizot B; Motte H; Lobet G; Storme V; Clauw P; Njo M; Beeckman T
    Front Plant Sci; 2021; 12():814110. PubMed ID: 35154211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Method for Characterization of Root Traits in Chickpea Germplasm for Legume Genomics and Breeding.
    Chen Y; Zhou T; Siddique KHM
    Methods Mol Biol; 2020; 2107():269-275. PubMed ID: 31893453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated High-Throughput Root Phenotyping of Arabidopsis thaliana Under Nutrient Deficiency Conditions.
    Satbhai SB; Göschl C; Busch W
    Methods Mol Biol; 2017; 1610():135-153. PubMed ID: 28439862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-throughput phenotyping for crop improvement in the genomics era.
    Mir RR; Reynolds M; Pinto F; Khan MA; Bhat MA
    Plant Sci; 2019 May; 282():60-72. PubMed ID: 31003612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping.
    Pound MP; Atkinson JA; Townsend AJ; Wilson MH; Griffiths M; Jackson AS; Bulat A; Tzimiropoulos G; Wells DM; Murchie EH; Pridmore TP; French AP
    Gigascience; 2017 Oct; 6(10):1-10. PubMed ID: 29020747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RSAtrace3D: robust vectorization software for measuring monocot root system architecture.
    Teramoto S; Tanabata T; Uga Y
    BMC Plant Biol; 2021 Aug; 21(1):398. PubMed ID: 34433428
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Simple Protocol for Mapping the Plant Root System Architecture Traits.
    Shukla D; Trivedi PK; Sahi S
    J Vis Exp; 2023 Feb; (192):. PubMed ID: 36847372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shovelomics for phenotyping root architectural traits of rapeseed/canola (Brassica napus L.) and genome-wide association mapping.
    Arifuzzaman M; Oladzadabbasabadi A; McClean P; Rahman M
    Mol Genet Genomics; 2019 Aug; 294(4):985-1000. PubMed ID: 30968249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computer vision and machine learning enabled soybean root phenotyping pipeline.
    Falk KG; Jubery TZ; Mirnezami SV; Parmley KA; Sarkar S; Singh A; Ganapathysubramanian B; Singh AK
    Plant Methods; 2020; 16():5. PubMed ID: 31993072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-Wide Association Study of Root System Architecture in Maize.
    Wu B; Ren W; Zhao L; Li Q; Sun J; Chen F; Pan Q
    Genes (Basel); 2022 Jan; 13(2):. PubMed ID: 35205226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mining genes regulating root system architecture in maize based on data integration analysis.
    He K; Zhao Z; Ren W; Chen Z; Chen L; Chen F; Mi G; Pan Q; Yuan L
    Theor Appl Genet; 2023 May; 136(6):127. PubMed ID: 37188973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissecting chickpea genomic loci associated with the root penetration responsive traits in compacted soil.
    Donde R; Kohli PS; Pandey M; Sirohi U; Singh B; Giri J
    Planta; 2023 Dec; 259(1):17. PubMed ID: 38078944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphological and genetic characterisation of the root system architecture of selected barley recombinant chromosome substitution lines using an integrated phenotyping approach.
    Canto CF; Kalogiros DI; Ptashnyk M; George TS; Waugh R; Bengough AG; Russell J; Dupuy LX
    J Theor Biol; 2018 Jun; 447():84-97. PubMed ID: 29559229
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenotyping seedlings for selection of root system architecture in alfalfa (Medicago sativa L.).
    Bucciarelli B; Xu Z; Ao S; Cao Y; Monteros MJ; Topp CN; Samac DA
    Plant Methods; 2021 Dec; 17(1):125. PubMed ID: 34876178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New Strategies and Tools in Quantitative Genetics: How to Go from the Phenotype to the Genotype.
    Bazakos C; Hanemian M; Trontin C; Jiménez-Gómez JM; Loudet O
    Annu Rev Plant Biol; 2017 Apr; 68():435-455. PubMed ID: 28226236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shaping the root system architecture in plants for adaptation to drought stress.
    Ranjan A; Sinha R; Singla-Pareek SL; Pareek A; Singh AK
    Physiol Plant; 2022 Mar; 174(2):e13651. PubMed ID: 35174506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating GWAS and Gene Expression Analysis Identifies Candidate Genes for Root Morphology Traits in Maize at the Seedling Stage.
    Wang H; Wei J; Li P; Wang Y; Ge Z; Qian J; Fan Y; Ni J; Xu Y; Yang Z; Xu C
    Genes (Basel); 2019 Oct; 10(10):. PubMed ID: 31581635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.