These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
716 related articles for article (PubMed ID: 36169691)
1. Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model. Ma X; Xia L; Chen J; Wan W; Zhou W Eur Radiol; 2023 Mar; 33(3):1949-1962. PubMed ID: 36169691 [TBL] [Abstract][Full Text] [Related]
2. [Application of a Radiomics Model for Preding Lymph Node Metastasis in Non-small Cell Lung Cancer]. Zhu J; Xu WG; Xiao H; Zhou Y Sichuan Da Xue Xue Bao Yi Xue Ban; 2019 May; 50(3):373-378. PubMed ID: 31631606 [TBL] [Abstract][Full Text] [Related]
3. Predicting N2 lymph node metastasis in presurgical stage I-II non-small cell lung cancer using multiview radiomics and deep learning method. Zhang H; Liao M; Guo Q; Chen J; Wang S; Liu S; Xiao F Med Phys; 2023 Apr; 50(4):2049-2060. PubMed ID: 36563341 [TBL] [Abstract][Full Text] [Related]
4. A deep learning-based radiomics model for predicting lymph node status from lung adenocarcinoma. Xie H; Song C; Jian L; Guo Y; Li M; Luo J; Li Q; Tan T BMC Med Imaging; 2024 May; 24(1):121. PubMed ID: 38789936 [TBL] [Abstract][Full Text] [Related]
5. Predicting occult lymph node metastasis in solid-predominantly invasive lung adenocarcinoma across multiple centers using radiomics-deep learning fusion model. Tian W; Yan Q; Huang X; Feng R; Shan F; Geng D; Zhang Z Cancer Imaging; 2024 Jan; 24(1):8. PubMed ID: 38216999 [TBL] [Abstract][Full Text] [Related]
6. Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer. Li J; Dong D; Fang M; Wang R; Tian J; Li H; Gao J Eur Radiol; 2020 Apr; 30(4):2324-2333. PubMed ID: 31953668 [TBL] [Abstract][Full Text] [Related]
7. Development and Validation of a Deep Learning Radiomics Model to Predict High-Risk Pathologic Pulmonary Nodules Using Preoperative Computed Tomography. Ye G; Wu G; Li K; Zhang C; Zhuang Y; Liu H; Song E; Qi Y; Li Y; Yang F; Liao Y Acad Radiol; 2024 Apr; 31(4):1686-1697. PubMed ID: 37802672 [TBL] [Abstract][Full Text] [Related]
8. Radiomics using CT images for preoperative prediction of lymph node metastasis in perihilar cholangiocarcinoma: a multi-centric study. Zhan PC; Yang T; Zhang Y; Liu KY; Li Z; Zhang YY; Liu X; Liu NN; Wang HX; Shang B; Chen Y; Jiang HY; Zhao XT; Shao JH; Chen Z; Wang XD; Wang K; Gao JB; Lyu PJ Eur Radiol; 2024 Feb; 34(2):1280-1291. PubMed ID: 37589900 [TBL] [Abstract][Full Text] [Related]
9. Radiomics Approach to Prediction of Occult Mediastinal Lymph Node Metastasis of Lung Adenocarcinoma. Zhong Y; Yuan M; Zhang T; Zhang YD; Li H; Yu TF AJR Am J Roentgenol; 2018 Jul; 211(1):109-113. PubMed ID: 29667885 [TBL] [Abstract][Full Text] [Related]
10. Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT? Wang X; Zhao X; Li Q; Xia W; Peng Z; Zhang R; Li Q; Jian J; Wang W; Tang Y; Liu S; Gao X Eur Radiol; 2019 Nov; 29(11):6049-6058. PubMed ID: 30887209 [TBL] [Abstract][Full Text] [Related]
11. 2-[ Xu L; Huang G; Wang Y; Huang G; Liu J; Chen R Eur J Nucl Med Mol Imaging; 2024 May; 51(6):1729-1740. PubMed ID: 38150017 [TBL] [Abstract][Full Text] [Related]
12. Development and Validation of a Nomogram for Preoperative Prediction of Lymph Node Metastasis in Lung Adenocarcinoma Based on Radiomics Signature and Deep Learning Signature. Ran J; Cao R; Cai J; Yu T; Zhao D; Wang Z Front Oncol; 2021; 11():585942. PubMed ID: 33968715 [TBL] [Abstract][Full Text] [Related]
13. Integrative nomogram of intratumoral, peritumoral, and lymph node radiomic features for prediction of lymph node metastasis in cT1N0M0 lung adenocarcinomas. Das SK; Fang KW; Xu L; Li B; Zhang X; Yang HF Sci Rep; 2021 May; 11(1):10829. PubMed ID: 34031529 [TBL] [Abstract][Full Text] [Related]
14. A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma. Ji GW; Zhu FP; Zhang YD; Liu XS; Wu FY; Wang K; Xia YX; Zhang YD; Jiang WJ; Li XC; Wang XH Eur Radiol; 2019 Jul; 29(7):3725-3735. PubMed ID: 30915561 [TBL] [Abstract][Full Text] [Related]
15. Deep Learning Radiomics Nomogram Based on Multiphase Computed Tomography for Predicting Axillary Lymph Node Metastasis in Breast Cancer. Zhang J; Yin W; Yang L; Yao X Mol Imaging Biol; 2024 Feb; 26(1):90-100. PubMed ID: 37563517 [TBL] [Abstract][Full Text] [Related]
16. A cutting-edge deep learning-and-radiomics-based ultrasound nomogram for precise prediction of axillary lymph node metastasis in breast cancer patients ≥ 75 years. Qian L; Liu X; Zhou S; Zhi W; Zhang K; Li H; Li J; Chang C Front Endocrinol (Lausanne); 2024; 15():1323452. PubMed ID: 39072273 [TBL] [Abstract][Full Text] [Related]
17. Magnetic resonance imaging-based radiomics and deep learning models for predicting lymph node metastasis of squamous cell carcinoma of the tongue. Wang D; He X; Huang C; Li W; Li H; Huang C; Hu C Oral Surg Oral Med Oral Pathol Oral Radiol; 2024 Jul; 138(1):214-224. PubMed ID: 38378316 [TBL] [Abstract][Full Text] [Related]
18. Radiomics nomogram outperforms size criteria in discriminating lymph node metastasis in resectable esophageal squamous cell carcinoma. Tan X; Ma Z; Yan L; Ye W; Liu Z; Liang C Eur Radiol; 2019 Jan; 29(1):392-400. PubMed ID: 29922924 [TBL] [Abstract][Full Text] [Related]
19. A comparison of 18 F-FDG PET-based radiomics and deep learning in predicting regional lymph node metastasis in patients with resectable lung adenocarcinoma: a cross-scanner and temporal validation study. Lue KH; Chen YH; Chu SC; Chang BS; Lin CB; Chen YC; Lin HH; Liu SH Nucl Med Commun; 2023 Dec; 44(12):1094-1105. PubMed ID: 37728592 [TBL] [Abstract][Full Text] [Related]
20. Computer-aided diagnosis of distal metastasis in non-small cell lung cancer by low-dose CT based radiomics and deep learning signatures. Song X; Duan X; He X; Wang Y; Li K; Deng B; Chen X; Wang Y; Li M; Shan H Radiol Med; 2024 Feb; 129(2):239-251. PubMed ID: 38214839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]