BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 36169890)

  • 1. The Role of Heme Peroxo Oxidants in the Rational Mechanistic Modeling of Nitric Oxide Synthase: Characterization of Key Intermediates and Elucidation of the Mechanism.
    Mondal P; Ishigami I; Yeh SR; Wijeratne GB
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202211521. PubMed ID: 36169890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EPR and ENDOR characterization of intermediates in the cryoreduced oxy-nitric oxide synthase heme domain with bound L-arginine or N(G)-hydroxyarginine.
    Davydov R; Ledbetter-Rogers A; Martásek P; Larukhin M; Sono M; Dawson JH; Masters BS; Hoffman BM
    Biochemistry; 2002 Aug; 41(33):10375-81. PubMed ID: 12173923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The second step of the nitric oxide synthase reaction: evidence for ferric-peroxo as the active oxidant.
    Woodward JJ; Chang MM; Martin NI; Marletta MA
    J Am Chem Soc; 2009 Jan; 131(1):297-305. PubMed ID: 19128180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of the N(omega)-hydroxy-L-arginine complex of inducible nitric oxide synthase oxygenase dimer with active and inactive pterins.
    Crane BR; Arvai AS; Ghosh S; Getzoff ED; Stuehr DJ; Tainer JA
    Biochemistry; 2000 Apr; 39(16):4608-21. PubMed ID: 10769116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic and cryoreduction EPR studies of the hydroxylation of methylated N(ω)-hydroxy-L-arginine analogues by nitric oxide synthase from Geobacillus stearothermophilus.
    Davydov R; Labby KJ; Chobot SE; Lukoyanov DA; Crane BR; Silverman RB; Hoffman BM
    Biochemistry; 2014 Oct; 53(41):6511-9. PubMed ID: 25251261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrosyl-heme structures of Bacillus subtilis nitric oxide synthase have implications for understanding substrate oxidation.
    Pant K; Crane BR
    Biochemistry; 2006 Feb; 45(8):2537-44. PubMed ID: 16489746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms.
    Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ
    Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EPR and ENDOR characterization of the reactive intermediates in the generation of NO by cryoreduced oxy-nitric oxide synthase from Geobacillus stearothermophilus.
    Davydov R; Sudhamsu J; Lees NS; Crane BR; Hoffman BM
    J Am Chem Soc; 2009 Oct; 131(40):14493-507. PubMed ID: 19754116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid kinetic studies link tetrahydrobiopterin radical formation to heme-dioxy reduction and arginine hydroxylation in inducible nitric-oxide synthase.
    Wei CC; Wang ZQ; Wang Q; Meade AL; Hemann C; Hille R; Stuehr DJ
    J Biol Chem; 2001 Jan; 276(1):315-9. PubMed ID: 11020389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting heme mechanisms. A perspective on the mechanisms of nitric oxide synthase (NOS), Heme oxygenase (HO), and cytochrome P450s (CYP450s).
    Zhu Y; Silverman RB
    Biochemistry; 2008 Feb; 47(8):2231-43. PubMed ID: 18237198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast ferrous heme-NO oxidation in nitric oxide synthases.
    Tejero J; Santolini J; Stuehr DJ
    FEBS J; 2009 Aug; 276(16):4505-14. PubMed ID: 19691141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential effects of mutations in human endothelial nitric oxide synthase at residues Tyr-357 and Arg-365 on L-arginine hydroxylation and GN-hydroxy-L-arginine oxidation.
    Chen PF; Berka V; Wu KK
    Arch Biochem Biophys; 2003 Mar; 411(1):83-92. PubMed ID: 12590926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic characterization of five- and six-coordinate ferrous-NO heme complexes. Evidence for heme Fe-proximal cysteinate bond cleavage in the ferrous-NO adducts of the Trp-409Tyr/Phe proximal environment mutants of neuronal nitric oxide synthase.
    Voegtle HL; Sono M; Adak S; Pond AE; Tomita T; Perera R; Goodin DB; Ikeda-Saito M; Stuehr DJ; Dawson JH
    Biochemistry; 2003 Mar; 42(8):2475-84. PubMed ID: 12600215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic characterization of five key kinetic parameters that define neuronal nitric oxide synthase catalysis.
    Haque MM; Tejero J; Bayachou M; Wang ZQ; Fadlalla M; Stuehr DJ
    FEBS J; 2013 Sep; 280(18):4439-53. PubMed ID: 23789902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of an end-on ferric peroxo intermediate upon one-electron reduction of a ferric superoxo heme.
    Liu JG; Shimizu Y; Ohta T; Naruta Y
    J Am Chem Soc; 2010 Mar; 132(11):3672-3. PubMed ID: 20196593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygenase domain of Drosophila melanogaster nitric oxide synthase: unique kinetic parameters enable a more efficient NO release.
    Ray SS; Tejero J; Wang ZQ; Dutta T; Bhattacharjee A; Regulski M; Tully T; Ghosh S; Stuehr DJ
    Biochemistry; 2007 Oct; 46(42):11857-64. PubMed ID: 17900148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting regulation mechanism of the FMN to heme interdomain electron transfer in nitric oxide synthases.
    Feng C; Chen L; Li W; Elmore BO; Fan W; Sun X
    J Inorg Biochem; 2014 Jan; 130():130-40. PubMed ID: 24084585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of the ketoxime acetoxime to nitric oxide by oxygen radical-generating systems.
    Caro AA; Cederbaum AI; Stoyanovsky DA
    Nitric Oxide; 2001 Aug; 5(4):413-24. PubMed ID: 11485379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide.
    Griscavage JM; Fukuto JM; Komori Y; Ignarro LJ
    J Biol Chem; 1994 Aug; 269(34):21644-9. PubMed ID: 7520440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.