BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36170144)

  • 1. Ear pinnae in a neotropical katydid (Orthoptera: Tettigoniidae) function as ultrasound guides for bat detection.
    Pulver CA; Celiker E; Woodrow C; Geipel I; Soulsbury CD; Cullen DA; Rogers SM; Veitch D; Montealegre-Z F
    Elife; 2022 Sep; 11():. PubMed ID: 36170144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Eocene insect could hear conspecific ultrasounds and bat echolocation.
    Woodrow C; Celiker E; Montealegre-Z F
    Curr Biol; 2023 Dec; 33(24):5304-5315.e3. PubMed ID: 37963458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the tympanic membrane impedance of the katydid Copiphora gorgonensis (Insecta: Orthoptera: Tettigoniidae).
    Celiker E; Jonsson T; Montealegre-Z F
    J Acoust Soc Am; 2020 Oct; 148(4):1952. PubMed ID: 33138497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory-based defence against gleaning bats in neotropical katydids (Orthoptera: Tettigoniidae).
    ter Hofstede HM; Kalko EK; Fullard JH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 May; 196(5):349-58. PubMed ID: 20237786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revisiting adaptations of neotropical katydids (Orthoptera: Tettigoniidae) to gleaning bat predation.
    Ter Hofstede H; Voigt-Heucke S; Lang A; Römer H; Page R; Faure P; Dechmann D
    Neotrop Biodivers; 2017 Jan; 3(1):41-49. PubMed ID: 28261664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wing mechanics and acoustic communication of a new genus of sylvan katydid (Orthoptera: Tettigoniidae: Pseudophyllinae) from the Central Cordillera cloud forest of Colombia.
    Holmes LB; Woodrow C; Sarria-S FA; Celiker E; Montealegre-Z F
    PeerJ; 2024; 12():e17501. PubMed ID: 38952987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sheep in wolves' clothing: prey rely on proactive defences when predator and non-predator cues are similar.
    Symes LB; Martinson SJ; Kernan CE; Ter Hofstede HM
    Proc Biol Sci; 2020 Aug; 287(1933):20201212. PubMed ID: 32842929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory-based niche partitioning in a multiple predator - multiple prey community.
    Falk JJ; ter Hofstede HM; Jones PL; Dixon MM; Faure PA; Kalko EK; Page RA
    Proc Biol Sci; 2015 Jun; 282(1808):20150520. PubMed ID: 25994677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural representation of bat predation risk and evasive flight in moths: A modelling approach.
    Goerlitz HR; Hofstede HMT; Holderied MW
    J Theor Biol; 2020 Feb; 486():110082. PubMed ID: 31734242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliable detection of predator cues in afferent spike trains of a katydid under high background noise levels.
    Hartbauer M; Radspieler G; Römer H
    J Exp Biol; 2010 Sep; 213(Pt 17):3036-46. PubMed ID: 20709932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hearing diversity in moths confronting a neotropical bat assemblage.
    Cobo-Cuan A; Kössl M; Mora EC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Sep; 203(9):707-715. PubMed ID: 28421281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What determines the tuning of hearing organs and the frequency of calls? A comparative study in the katydid genus Neoconocephalus (Orthoptera, Tettigoniidae).
    Schul J; Patterson AC
    J Exp Biol; 2003 Jan; 206(Pt 1):141-52. PubMed ID: 12456704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound avoidance by flying antlions (Myrmeleontidae).
    Holderied MW; Thomas LA; Korine C
    J Exp Biol; 2018 Oct; 221(Pt 21):. PubMed ID: 30224368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic camouflage increases with body size and changes with bat echolocation frequency range in a community of nocturnally active Lepidoptera.
    Simon R; Dreissen A; Leroy H; Berg MP; Halfwerk W
    J Anim Ecol; 2023 Dec; 92(12):2363-2372. PubMed ID: 37882060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decision making in the face of a deadly predator: high-amplitude behavioural thresholds can be adaptive for rainforest crickets under high background noise levels.
    Römer H; Holderied M
    Philos Trans R Soc Lond B Biol Sci; 2020 Jul; 375(1802):20190471. PubMed ID: 32420855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptations for Substrate Gleaning in Bats: The Pallid Bat as a Case Study.
    Razak KA
    Brain Behav Evol; 2018; 91(2):97-108. PubMed ID: 29874652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neuroethology of song cessation in response to gleaning bat calls in two species of katydids, Neoconocephalus ensiger and Amblycorypha oblongifolia.
    ter Hofstede HM; Fullard JH
    J Exp Biol; 2008 Aug; 211(Pt 15):2431-41. PubMed ID: 18626077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cercal organ may provide singing tettigoniids a backup sensory system for the detection of eavesdropping bats.
    Hartbauer M; Ofner E; Grossauer V; Siemers BM
    PLoS One; 2010 Sep; 5(9):e12698. PubMed ID: 20856887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary escalation: the bat-moth arms race.
    Ter Hofstede HM; Ratcliffe JM
    J Exp Biol; 2016 Jun; 219(Pt 11):1589-602. PubMed ID: 27252453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Keeping up with bats: dynamic auditory tuning in a moth.
    Windmill JF; Jackson JC; Tuck EJ; Robert D
    Curr Biol; 2006 Dec; 16(24):2418-23. PubMed ID: 17174915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.