These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36170309)

  • 21. Ectopic osteogenic tissue formation by MC3T3-E1 cell-laden chitosan/hydroxyapatite composite scaffold.
    Koç A; Elçin AE; Elçin YM
    Artif Cells Nanomed Biotechnol; 2016 Sep; 44(6):1440-7. PubMed ID: 25968048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone reconstruction in rat calvarial defects by chitosan/hydroxyapatite nanoparticles scaffold loaded with unrestricted somatic stem cells.
    Biazar E; Heidari Keshel S; Tavirani MR; Jahandideh R
    Artif Cells Nanomed Biotechnol; 2015 Apr; 43(2):112-6. PubMed ID: 24456006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model.
    Yea JH; Bae TS; Kim BJ; Cho YW; Jo CH
    Acta Biomater; 2020 Sep; 114():104-116. PubMed ID: 32682057
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Salvianolic Acid B-Loaded Chitosan/hydroxyapatite Scaffolds Promotes The Repair Of Segmental Bone Defect By Angiogenesis And Osteogenesis.
    Ji C; Bi L; Li J; Fan J
    Int J Nanomedicine; 2019; 14():8271-8284. PubMed ID: 31686820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled release of minocycline in hydroxyapatite/chitosan composite for periodontal bone defect repair.
    Gao H; Ge K; Xu Y; Wang Y; Lu M; Wei Y; Zhu Q; Han X; Huang Q; Cao Z
    Dent Mater J; 2022 May; 41(3):346-352. PubMed ID: 35321974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Composite scaffolds loaded with bone mesenchymal stem cells promote the repair of radial bone defects in rabbit model.
    Ruan SQ; Deng J; Yan L; Huang WL
    Biomed Pharmacother; 2018 Jan; 97():600-606. PubMed ID: 29101803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polydopamine-coated biomimetic bone scaffolds loaded with exosomes promote osteogenic differentiation of BMSC and bone regeneration.
    Zhou Y; Deng G; She H; Bai F; Xiang B; Zhou J; Zhang S
    Regen Ther; 2023 Jun; 23():25-36. PubMed ID: 37063095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repair of rat critical size calvarial defect using osteoblast-like and umbilical vein endothelial cells seeded in gelatin/hydroxyapatite scaffolds.
    Johari B; Ahmadzadehzarajabad M; Azami M; Kazemi M; Soleimani M; Kargozar S; Hajighasemlou S; Farajollahi MM; Samadikuchaksaraei A
    J Biomed Mater Res A; 2016 Jul; 104(7):1770-8. PubMed ID: 26990815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison capacity of collagen hydrogel, mix-powder and in situ hydroxyapatite/collagen hydrogelscaffolds with and without mesenchymal stem cells and platelet-rich plasma in regeneration of critical sized bone defect in a rabbit animal model.
    Bakhtiarimoghadam B; Shirian S; Mirzaei E; Sharifi S; Karimi I; Gharati G; Takallu S; Nazari H
    J Biomed Mater Res B Appl Biomater; 2021 Dec; 109(12):2199-2212. PubMed ID: 34008330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dimethyloxaloylglycine-stimulated human bone marrow mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR pathway.
    Liang B; Liang JM; Ding JN; Xu J; Xu JG; Chai YM
    Stem Cell Res Ther; 2019 Nov; 10(1):335. PubMed ID: 31747933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bone regeneration by nanohydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds seeded with human umbilical cord mesenchymal stem cells in the calvarial defects of the nude mice.
    Wang F; Su XX; Guo YC; Li A; Zhang YC; Zhou H; Qiao H; Guan LM; Zou M; Si XQ
    Biomed Res Int; 2015; 2015():261938. PubMed ID: 26550565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exosomes Derived from TIMP2-Modified Human Umbilical Cord Mesenchymal Stem Cells Enhance the Repair Effect in Rat Model with Myocardial Infarction Possibly by the Akt/Sfrp2 Pathway.
    Ni J; Liu X; Yin Y; Zhang P; Xu YW; Liu Z
    Oxid Med Cell Longev; 2019; 2019():1958941. PubMed ID: 31182988
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HA-g-CS Implant and Moderate-intensity Exercise Stimulate Subchondral Bone Remodeling and Promote Repair of Osteochondral Defects in Mice.
    Shen K; Liu X; Qin H; Chai Y; Wang L; Yu B
    Int J Med Sci; 2021; 18(16):3808-3820. PubMed ID: 34790057
    [No Abstract]   [Full Text] [Related]  

  • 34. Preparation and characterization of bionic bone structure chitosan/hydroxyapatite scaffold for bone tissue engineering.
    Zhang J; Nie J; Zhang Q; Li Y; Wang Z; Hu Q
    J Biomater Sci Polym Ed; 2014; 25(1):61-74. PubMed ID: 24053536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nacre-mimetic hydroxyapatite/chitosan/gelatin layered scaffolds modifying substance P for subchondral bone regeneration.
    Chen D; Liu P; Li M; Zhang C; Gao Y; Guo Y
    Carbohydr Polym; 2022 Sep; 291():119575. PubMed ID: 35698339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The immunogenic reaction and bone defect repair function of ε-poly-L-lysine (EPL)-coated nanoscale PCL/HA scaffold in rabbit calvarial bone defect.
    Tian B; Wang N; Jiang Q; Tian L; Hu L; Zhang Z
    J Mater Sci Mater Med; 2021 Jun; 32(6):63. PubMed ID: 34097140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.
    Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG
    Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan, calcium polyphosphate and pigeonite for bone tissue engineering.
    Dhivya S; Keshav Narayan A; Logith Kumar R; Viji Chandran S; Vairamani M; Selvamurugan N
    Cell Prolif; 2018 Feb; 51(1):. PubMed ID: 29159895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of three-dimensional porous chitosan-alginate scaffolds in rat calvarial defects for bone regeneration applications.
    Florczyk SJ; Leung M; Li Z; Huang JI; Hopper RA; Zhang M
    J Biomed Mater Res A; 2013 Oct; 101(10):2974-83. PubMed ID: 23737120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway.
    Zhang J; Liu X; Li H; Chen C; Hu B; Niu X; Li Q; Zhao B; Xie Z; Wang Y
    Stem Cell Res Ther; 2016 Sep; 7(1):136. PubMed ID: 27650895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.