These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 36170411)
1. Dynamic Domain Adaptation for Class-Aware Cross-Subject and Cross-Session EEG Emotion Recognition. Li Z; Zhu E; Jin M; Fan C; He H; Cai T; Li J IEEE J Biomed Health Inform; 2022 Dec; 26(12):5964-5973. PubMed ID: 36170411 [TBL] [Abstract][Full Text] [Related]
2. MGFKD: A semi-supervised multi-source domain adaptation algorithm for cross-subject EEG emotion recognition. Zhang R; Guo H; Xu Z; Hu Y; Chen M; Zhang L Brain Res Bull; 2024 Mar; 208():110901. PubMed ID: 38355058 [TBL] [Abstract][Full Text] [Related]
3. Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition. Chai X; Wang Q; Zhao Y; Liu X; Bai O; Li Y Comput Biol Med; 2016 Dec; 79():205-214. PubMed ID: 27810626 [TBL] [Abstract][Full Text] [Related]
4. A Fast, Efficient Domain Adaptation Technique for Cross-Domain Electroencephalography(EEG)-Based Emotion Recognition. Chai X; Wang Q; Zhao Y; Li Y; Liu D; Liu X; Bai O Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28467371 [TBL] [Abstract][Full Text] [Related]
5. Reducing the Calibration Effort of EEG Emotion Recognition using Domain Adaptation with Soft Labels. Li Z; Chen H; Jin M; Li J Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5962-5965. PubMed ID: 34892476 [TBL] [Abstract][Full Text] [Related]
6. MEERNet: Multi-source EEG-based Emotion Recognition Network for Generalization Across Subjects and Sessions. Chen H; Li Z; Jin M; Li J Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6094-6097. PubMed ID: 34892507 [TBL] [Abstract][Full Text] [Related]
7. Local domain generalization with low-rank constraint for EEG-based emotion recognition. Tao J; Dan Y; Zhou D Front Neurosci; 2023; 17():1213099. PubMed ID: 38027525 [TBL] [Abstract][Full Text] [Related]
8. Multi-subject subspace alignment for non-stationary EEG-based emotion recognition. Chai X; Wang Q; Zhao Y; Liu X; Liu D; Bai O Technol Health Care; 2018; 26(S1):327-335. PubMed ID: 29758967 [TBL] [Abstract][Full Text] [Related]
9. Multi-Scale Masked Autoencoders for Cross-Session Emotion Recognition. Pang M; Wang H; Huang J; Vong CM; Zeng Z; Chen C IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1637-1646. PubMed ID: 38619940 [TBL] [Abstract][Full Text] [Related]
10. Multi-source domain transfer network based on subdomain adaptation and minimum class confusion for EEG emotion recognition. Zhu L; Xu M; Huang A; Zhang J; Tan X Comput Methods Biomech Biomed Engin; 2024 Oct; ():1-13. PubMed ID: 39429223 [TBL] [Abstract][Full Text] [Related]
11. MS-MDA: Multisource Marginal Distribution Adaptation for Cross-Subject and Cross-Session EEG Emotion Recognition. Chen H; Jin M; Li Z; Fan C; Li J; He H Front Neurosci; 2021; 15():778488. PubMed ID: 34949983 [TBL] [Abstract][Full Text] [Related]
12. Instance-representation transfer method based on joint distribution and deep adaptation for EEG emotion recognition. Zhu L; Yu F; Huang A; Ying N; Zhang J Med Biol Eng Comput; 2024 Feb; 62(2):479-493. PubMed ID: 37914959 [TBL] [Abstract][Full Text] [Related]
13. [Cross-subject electroencephalogram emotion recognition based on maximum classifier discrepancy]. Cai Z; Guo M; Yang X; Chen X; Xu G Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):455-462. PubMed ID: 34180190 [TBL] [Abstract][Full Text] [Related]
14. MLDA: Multi-Loss Domain Adaptor for Cross-Session and Cross-Emotion EEG-Based Individual Identification. Miao Y; Jiang W; Su N; Shan J; Jiang T; Zuo N IEEE J Biomed Health Inform; 2023 Dec; 27(12):5767-5778. PubMed ID: 37713231 [TBL] [Abstract][Full Text] [Related]
15. Cross-subject EEG emotion recognition using multi-source domain manifold feature selection. She Q; Shi X; Fang F; Ma Y; Zhang Y Comput Biol Med; 2023 Jun; 159():106860. PubMed ID: 37080005 [TBL] [Abstract][Full Text] [Related]
16. TSFAN: tensorized spatial-frequency attention network with domain adaptation for cross-session EEG-based biometric recognition. Jin X; Yang X; Kong W; Zhu L; Tang J; Peng Y; Ding Y; Zhao Q J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38866001 [No Abstract] [Full Text] [Related]
17. Cerebral asymmetry representation learning-based deep subdomain adaptation network for electroencephalogram-based emotion recognition. Wang Z; Wang Y; Wan X; Tang Y Physiol Meas; 2024 Mar; 45(3):. PubMed ID: 38422513 [No Abstract] [Full Text] [Related]
18. DAGAM: a domain adversarial graph attention model for subject-independent EEG-based emotion recognition. Xu T; Dang W; Wang J; Zhou Y J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36548989 [No Abstract] [Full Text] [Related]
19. SFT-SGAT: A semi-supervised fine-tuning self-supervised graph attention network for emotion recognition and consciousness detection. Qiu L; Zhong L; Li J; Feng W; Zhou C; Pan J Neural Netw; 2024 Dec; 180():106643. PubMed ID: 39186838 [TBL] [Abstract][Full Text] [Related]
20. Two-Level Domain Adaptation Neural Network for EEG-Based Emotion Recognition. Bao G; Zhuang N; Tong L; Yan B; Shu J; Wang L; Zeng Y; Shen Z Front Hum Neurosci; 2020; 14():605246. PubMed ID: 33551775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]