These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 36170769)
41. Micropollutant biotransformation and bioaccumulation in natural stream biofilms. Desiante WL; Minas NS; Fenner K Water Res; 2021 Apr; 193():116846. PubMed ID: 33540344 [TBL] [Abstract][Full Text] [Related]
42. Cascading influences of grassland degradation on nutrient limitation in a high mountain lake and its inflow streams. Ren Z; Niu D; Ma P; Wang Y; Fu H; Elser JJ Ecology; 2019 Aug; 100(8):e02755. PubMed ID: 31087341 [TBL] [Abstract][Full Text] [Related]
43. Tolerance Patterns in Stream Biofilms Link Complex Chemical Pollution to Ecological Impacts. Tlili A; Corcoll N; Arrhenius Å; Backhaus T; Hollender J; Creusot N; Wagner B; Behra R Environ Sci Technol; 2020 Sep; 54(17):10745-10753. PubMed ID: 32706249 [TBL] [Abstract][Full Text] [Related]
44. Effects of exposure duration of herbicides on natural stream periphyton communities and recovery. Gustavson K; Møhlenberg F; Schlüter L Arch Environ Contam Toxicol; 2003 Jul; 45(1):48-58. PubMed ID: 12948172 [TBL] [Abstract][Full Text] [Related]
45. Community-level and function response of photoautotrophic periphyton exposed to oxytetracycline hydrochloride. Wang Z; Yin S; Chou Q; Zhou D; Jeppesen E; Wang L; Zhang W Environ Pollut; 2022 Feb; 294():118593. PubMed ID: 34864100 [TBL] [Abstract][Full Text] [Related]
46. Wastewater microorganisms impact the micropollutant biotransformation potential of natural stream biofilms. Desiante WL; Carles L; Wullschleger S; Joss A; Stamm C; Fenner K Water Res; 2022 Jun; 217():118413. PubMed ID: 35504081 [TBL] [Abstract][Full Text] [Related]
47. Periphyton as an indicator of saltwater intrusion into freshwater wetlands: insights from experimental manipulations. Mazzei V; Wilson BJ; Servais S; Charles SP; Kominoski JS; Gaiser EE Ecol Appl; 2020 Apr; 30(3):e02067. PubMed ID: 31872508 [TBL] [Abstract][Full Text] [Related]
48. Metal toxicity and recovery response of riverine periphytic algae. Pandey LK; Bergey EA Sci Total Environ; 2018 Nov; 642():1020-1031. PubMed ID: 30045485 [TBL] [Abstract][Full Text] [Related]
49. The role of periphyton in mediating the effects of pollution in a stream ecosystem. Hill WR; Ryon MG; Smith JG; Adams SM; Boston HL; Stewart AJ Environ Manage; 2010 Mar; 45(3):563-76. PubMed ID: 20108138 [TBL] [Abstract][Full Text] [Related]
50. Nutrient Exposure Alters Microbial Composition, Structure, and Mercury Methylating Activity in Periphyton in a Contaminated Watershed. Carrell AA; Schwartz GE; Cregger MA; Gionfriddo CM; Elias DA; Wilpiszeski RL; Klingeman DM; Wymore AM; Muller KA; Brooks SC Front Microbiol; 2021; 12():647861. PubMed ID: 33815336 [TBL] [Abstract][Full Text] [Related]
51. Periphyton collectors as a tool to measure environmental performance of ocean outlets. Lemmens S Water Sci Technol; 2003; 47(7-8):125-31. PubMed ID: 12793671 [TBL] [Abstract][Full Text] [Related]
52. [Mechanisms responsible for the development of periphyton community structure during seasonal succession: the role of interspecies competition and plankton sedimentation]. Lukin VB Zh Obshch Biol; 2003; 64(3):263-72. PubMed ID: 12815943 [TBL] [Abstract][Full Text] [Related]
53. Impacts of municipal wastewater treatment plant discharge on microbial community structure and function of the receiving river in Northwest Tibetan Plateau. Wang J; Chen Y; Cai P; Gao Q; Zhong H; Sun W; Chen Q J Hazard Mater; 2022 Feb; 423(Pt B):127170. PubMed ID: 34537645 [TBL] [Abstract][Full Text] [Related]
54. Spatial and temporal patterns of periphyton chlorophyll a related to pulp and paper mill discharges in four US receiving streams. Flinders CA; Minshall GW; Hall TJ; Rodgers JH Integr Environ Assess Manag; 2009 Apr; 5(2):259-69. PubMed ID: 19132809 [TBL] [Abstract][Full Text] [Related]
55. Does an increase in irradiance influence periphyton in a heavily-grazed woodland stream? Steinman AD Oecologia; 1992 Aug; 91(2):163-170. PubMed ID: 28313452 [TBL] [Abstract][Full Text] [Related]
56. A transition to white LED increases ecological impacts of nocturnal illumination on aquatic primary producers in a lowland agricultural drainage ditch. Grubisic M; van Grunsven RHA; Manfrin A; Monaghan MT; Hölker F Environ Pollut; 2018 Sep; 240():630-638. PubMed ID: 29772513 [TBL] [Abstract][Full Text] [Related]
58. Start-up of a spiral periphyton bioreactor (SPR) for removal of COD and the characteristics of the associated microbial community. Shangguan H; Liu J; Zhu Y; Tong Z; Wu Y Bioresour Technol; 2015 Oct; 193():456-62. PubMed ID: 26162523 [TBL] [Abstract][Full Text] [Related]
59. Effects of sediment deposition on periphytic biomass, photosynthetic activity and algal community structure. Izagirre O; Serra A; Guasch H; Elosegi A Sci Total Environ; 2009 Oct; 407(21):5694-700. PubMed ID: 19666189 [TBL] [Abstract][Full Text] [Related]
60. Effect of butyl paraben on the development and microbial composition of periphyton. Song C; Lin J; Huang X; Wu Y; Liu J; Wu C Ecotoxicology; 2016 Mar; 25(2):342-9. PubMed ID: 26590928 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]