BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 36170841)

  • 1. Motor cortical influence relies on task-specific activity covariation.
    Warriner CL; Fageiry S; Saxena S; Costa RM; Miri A
    Cell Rep; 2022 Sep; 40(13):111427. PubMed ID: 36170841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task-specific depression of the soleus H-reflex after cocontraction training of antagonistic ankle muscles.
    Perez MA; Lundbye-Jensen J; Nielsen JB
    J Neurophysiol; 2007 Dec; 98(6):3677-87. PubMed ID: 17942616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behaviorally Selective Engagement of Short-Latency Effector Pathways by Motor Cortex.
    Miri A; Warriner CL; Seely JS; Elsayed GF; Cunningham JP; Churchland MM; Jessell TM
    Neuron; 2017 Aug; 95(3):683-696.e11. PubMed ID: 28735748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle Synergies Obtained from Comprehensive Mapping of the Cortical Forelimb Representation Using Stimulus Triggered Averaging of EMG Activity.
    Amundsen Huffmaster SL; Van Acker GM; Luchies CW; Cheney PD
    J Neurosci; 2018 Oct; 38(41):8759-8771. PubMed ID: 30150363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear summation of cat motor cortex outputs.
    Ethier C; Brizzi L; Darling WG; Capaday C
    J Neurosci; 2006 May; 26(20):5574-81. PubMed ID: 16707808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task dependent gain regulation of spinal circuits projecting to the human flexor carpi radialis.
    Carroll TJ; Baldwin ER; Collins DF
    Exp Brain Res; 2005 Mar; 161(3):299-306. PubMed ID: 15551085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential activation of motor cortical neurons contributes to intralimb coordination during reaching in the cat by modulating muscle synergies.
    Yakovenko S; Krouchev N; Drew T
    J Neurophysiol; 2011 Jan; 105(1):388-409. PubMed ID: 21068260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From the motor cortex to the movement and back again.
    Teka WW; Hamade KC; Barnett WH; Kim T; Markin SN; Rybak IA; Molkov YI
    PLoS One; 2017; 12(6):e0179288. PubMed ID: 28632736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of corticomotoneuronal postspike facilitation and reciprocal suppression of EMG activity in the monkey.
    Kasser RJ; Cheney PD
    J Neurophysiol; 1985 Apr; 53(4):959-78. PubMed ID: 3998800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do corticomotoneuronal cells predict target muscle EMG activity?
    Griffin DM; Hudson HM; Belhaj-Saïf A; McKiernan BJ; Cheney PD
    J Neurophysiol; 2008 Mar; 99(3):1169-986. PubMed ID: 18160426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization of the forelimb area in squirrel monkey motor cortex: representation of digit, wrist, and elbow muscles.
    Donoghue JP; Leibovic S; Sanes JN
    Exp Brain Res; 1992; 89(1):1-19. PubMed ID: 1601087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory action of forearm flexor muscle afferents on corticospinal outputs to antagonist muscles in humans.
    Bertolasi L; Priori A; Tinazzi M; Bertasi V; Rothwell JC
    J Physiol; 1998 Sep; 511 ( Pt 3)(Pt 3):947-56. PubMed ID: 9714872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Movement-specific signaling is differentially distributed across motor cortex layer 5 projection neuron classes.
    Currie SP; Ammer JJ; Premchand B; Dacre J; Wu Y; Eleftheriou C; Colligan M; Clarke T; Mitchell L; Faisal AA; Hennig MH; Duguid I
    Cell Rep; 2022 May; 39(6):110801. PubMed ID: 35545038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EMG activation patterns associated with high frequency, long-duration intracortical microstimulation of primary motor cortex.
    Griffin DM; Hudson HM; Belhaj-Saïf A; Cheney PD
    J Neurosci; 2014 Jan; 34(5):1647-56. PubMed ID: 24478348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated motor cortical control of task-related muscles during pointing in humans.
    Devanne H; Cohen LG; Kouchtir-Devanne N; Capaday C
    J Neurophysiol; 2002 Jun; 87(6):3006-17. PubMed ID: 12037204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of output effects from motor cortex to forelimb muscles in primates.
    Griffin DM; Hudson HM; Belhaj-Saïf A; Cheney PD
    J Neurosci; 2009 Feb; 29(6):1915-27. PubMed ID: 19211898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standard intensities of transcranial alternating current stimulation over the motor cortex do not entrain corticospinal inputs to motor neurons.
    Ibáñez J; Zicher B; Brown KE; Rocchi L; Casolo A; Del Vecchio A; Spampinato D; Vollette CA; Rothwell JC; Baker SN; Farina D
    J Physiol; 2023 Aug; 601(15):3187-3199. PubMed ID: 35776944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of sustained electromyographic activity by single intracortical microstimuli: comparison of two forelimb motor cortical areas of the rat.
    Liang F; Rouiller EM; Wiesendanger M
    Somatosens Mot Res; 1993; 10(1):51-61. PubMed ID: 8484296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of motor cortex and single muscle stimulation on neurons of the lateral vestibular nucleus in the rat.
    Licata F; Li Volsi G; Maugeri G; Santangelo F
    Neuroscience; 1990; 34(2):379-90. PubMed ID: 2333148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in corticospinal drive to spinal motoneurones following visuo-motor skill learning in humans.
    Perez MA; Lundbye-Jensen J; Nielsen JB
    J Physiol; 2006 Jun; 573(Pt 3):843-55. PubMed ID: 16581867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.