BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3617107)

  • 1. Prediction of deformation in the potassium-arrested canine left ventricle using the finite element model.
    Nakamura T; Abe H; Kasahara K; Tanaka M; Kimura T; Motomiya M; Arai S
    Tokai J Exp Clin Med; 1986 Aug; 11(3):219-28. PubMed ID: 3617107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of changes in chamber geometry by chronic pressure-overload on wall stress and strain as studied in the potassium-arrested canine left ventricle.
    Nakamura T; Abé H; Kimura T; Asoo N; Arai S; Suzuki N; Motomiya M
    Tokai J Exp Clin Med; 1985 Apr; 10(1):13-25. PubMed ID: 2937180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Static analysis of the left ventricle.
    Tözeren A
    J Biomech Eng; 1983 Feb; 105(1):39-46. PubMed ID: 6843100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of current leakage in left and right ventricular conductance volumetry using a dynamic finite element model.
    Gopakumaran B; Petre JH; Sturm B; White RD; Murray PA
    IEEE Trans Biomed Eng; 2000 Nov; 47(11):1476-86. PubMed ID: 11077741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo assessment of nonlinear myocardial deformation using finite element analysis and three-dimensional echocardiographic reconstruction.
    Gotteiner NL; Han G; Chandran KB; Vonesh MJ; Bresticker M; Greene R; Oba J; Kane BJ; Joob A; McPherson DD
    Am J Card Imaging; 1995 Jul; 9(3):185-94. PubMed ID: 7549359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residual stress produced by ventricular volume reduction surgery has little effect on ventricular function and mechanics: a finite element model study.
    Guccione JM; Moonly SM; Wallace AW; Ratcliffe MB
    J Thorac Cardiovasc Surg; 2001 Sep; 122(3):592-9. PubMed ID: 11547315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subendocardial and subepicardial pressure-flow relations in the rat heart in diastolic and systolic arrest.
    Lamberts RR; Willemsen MJ; Sipkema P; Westerhof N
    J Biomech; 2004 May; 37(5):697-707. PubMed ID: 15046999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical analysis of congestive heart failure caused by bundle branch block based on an electromechanical canine heart model.
    Dou J; Xia L; Zhang Y; Shou G; Wei Q; Liu F; Crozier S
    Phys Med Biol; 2009 Jan; 54(2):353-71. PubMed ID: 19098354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A finite element study relating to the rapid filling phase of the human ventricles.
    Bettendorff-Bakman DE; Schmid P; Lunkenheimer PP; Niederer P
    J Theor Biol; 2006 Jan; 238(2):303-16. PubMed ID: 16002095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale finite element analysis of the beating heart.
    McCulloch A; Waldman L; Rogers J; Guccione J
    Crit Rev Biomed Eng; 1992; 20(5-6):427-49. PubMed ID: 1486784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The absence of temperature effects on end-diastolic pressure-volume relations in the canine left ventricle determined by two-dimensional echocardiography.
    Haasler GB; Rodigas PC; Spotnitz HM
    J Thorac Cardiovasc Surg; 1982 Jun; 83(6):878-90. PubMed ID: 7087515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An energetically coherent lumped parameter model of the left ventricle specially developed for educational purposes.
    Díaz-Zuccarini V; LeFèvre J
    Comput Biol Med; 2007 Jun; 37(6):774-84. PubMed ID: 17052704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ventricular size and shape by two-dimensional echocardiography.
    Weiss JL; Eaton LW; Maughan WL; Brinker JA; Bulkley B; Guzman P; Yin FC
    Fed Proc; 1981 May; 40(7):2031-6. PubMed ID: 7227558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite-element model for the mechanical behavior of the left ventricle. Prediction of deformation in the potassium-arrested rat heart.
    Janz RF; Grimm AF
    Circ Res; 1972 Feb; 30(2):244-52. PubMed ID: 5061321
    [No Abstract]   [Full Text] [Related]  

  • 15. Factors influencing the diastolic pressure-volume relation of the cardiac ventricles.
    Janicki JS; Weber KT
    Fed Proc; 1980 Feb; 39(2):133-40. PubMed ID: 6986289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The principle of laplace and scaling of ventricular wall stress and blood pressure in mammals and birds.
    Seymour RS; Blaylock AJ
    Physiol Biochem Zool; 2000; 73(4):389-405. PubMed ID: 11009393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of partial left ventriculectomy on left ventricular geometry and wall stress in excised porcine hearts.
    Green GR; Moon MR; DeAnda A; Daughters GT; Glasson JR; Miller DC
    J Heart Valve Dis; 1998 Sep; 7(5):474-83. PubMed ID: 9793842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of passive rat left ventricle in diastolic dysfunction.
    Chaudhry HR; Bukiet B; Siegel M; Findley T; Ritter AB; Guzelsu N
    J Theor Biol; 1999 Nov; 201(1):37-46. PubMed ID: 10534434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model.
    Xia L; Huo M; Wei Q; Liu F; Crozier S
    Phys Med Biol; 2005 Apr; 50(8):1901-17. PubMed ID: 15815103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limitations in calculating left ventricular volume by two dimensional geometry--an exised canine heart study.
    Minezaki KK; Wang LM; Yamada Y; Shinozaki Y; Okino H
    Tokai J Exp Clin Med; 1989 Jun; 14(3):199-210. PubMed ID: 2638767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.